Тема. Основные конструкционные материалы, применяемые в ортопедической стоматологии: металлы и их сплавы, пластмассы.

Цель.Изучить состав, классификацию, механические, физические, технологические, химические свойства, технологию и область применения металлов и пластмасс в ортопедической стоматологии.

Метод проведения.Групповое занятие.

Место проведения.Учебная аудитория, клинический кабинет, зуботехническая лаборатория, кабинет мануальных навыков, лаборатория стоматологического материаловедения.

Обеспечение

Техническое оснащение: стоматологические установки, стоматологические инструменты, стоматологические материалы, мультимедийное оборудование.

Учебные пособия: фантомы головы и челюстей, стенды, мультимедийные презентации и учебные видеофильмы.

Средства контроля: контрольные вопросы, ситуационные задачи, вопросы для тестового контроля знаний, домашнее задание.

План занятия

1. Проверка выполнения домашнего задания.

2. Теоретическая часть. Основные конструкционные материалы, применяемые в ортопедической стоматологии: металлы и их сплавы, пластмассы. Свойства конструкционных материалов: твердость, прочность, упругость, пластичность, ковкость, текучесть, усадка, цвет, плотность, плавление, тепловое расширение, химическая стойкость и биологическая индеферентность. Металлы и сплавы, применяемые в ортопедической стоматологии. Технология применения сплавов металлов: литье, ковка, штамповка, прокатка, волочение, отжиг, закалка, паяние, отбеливание, шлифовка и полировка, катодное уплотнение. Полимеры: жесткие базисные полимеры, быстротвердеющие полимеры, пластмассовые искусственные зубы. Облицовочные полимеры для несъемных протезов. Собеседование по контрольным вопросам и задачам. Решение учебных ситуационных задач.

3. Клиническая часть. Демонстрация протезов из различных материалов в полости рта пациента и материалов в виде промышленно выпускаемых образцов.

4. Лабораторная часть. Протяжка и отжиг гильз. Предварительная и окончательная штамповка. Отбеливание и полировка коронок. Работа с пластмассами холодного отвердевания.

5. Самостоятельная работа студентов. Приготовление пластмассового теста и наблюдение за стадиями полимеризации быстротвердеющего полимера «Акрилоксид».

6. Разбор результатов самостоятельной работы студентов.

7. Решение контрольных ситуационных задач.

8. Тестовый контроль знаний.

9. Задание на следующее занятие.

Аннотация

Стоматологическое материаловедение является прикладной наукой, которая рассматривает вопросы происхождения, производства и применения стоматологических материалов, изучает их строение, свойства, а также решает проблемы создания новых, более эффективных материалов. Все материалы, применяемые в ортопедической стоматологии, можно разделить на две группы: основные и вспомогательные.

Основные или конструкционные материалыматериалы, из которых непосредственно изготавливают зубные или челюстные протезы.

К ним предъявляются следующие требования: 1) быть безвредными; 2) химически инертными в полости рта; 3) механически прочными, пластичными, упругими; 4) сохранять постоянство формы и объема; 5) обладать хорошими технологическими свойствами (легко поддаваться паянию, литью, сварке, штамповке, полированию и протяжке и др.); 6) по цвету быть аналогичными замещаемым тканям; 7) не должны иметь какого-либо привкуса и запаха; 8) обладать оптимальными гигиеническими свойствами, т.е. легко очищаться обычными средствами для чистки зубов.

К основным материалам относятся: металлы и их сплавы, пластмассы, фарфор и ситаллы.

Металлы– определенная группа элементов, которая вступает в химическую реакцию с неметаллами, и отдает им свои внешние электроны. Для металлов характерны пластичность, ковкость, непрозрачность, металлических блеск, высокие тепло - и электропроводность.

Все металлы можно разделить на две большие группы – черные и цветные. Черные металлы имеют темно-серый цвет, большую плотность, высокую температуру плавления, высокую твердость. Цветные металлы имеют красную, желтую, белую окраску, обладают большой пластичностью, малой твердостью, низкими температурами плавления. Из большой группы цветных металлов выделяют тяжелые и легкие. К тяжелым относят свинец, медь, никель, олово, цинк и др. Их плотность составляет 7,14-11,34. Легкие металлы – алюминий, магний, кальций, калий, натрий, барий, бериллий, и литий. Их плотность – 0,53 – 3,5. К легким металлам относят так же и титан, плотность которого равна 4,5. Обособленные группы среди цветных металлов занимают так называемые благородные и редкоземельные металлы. Металлы отличаются по типу кристаллических решеток. Чаще встречается кубическая объемно – центрированная решетка (например, у хрома, молибдена, ванадия), кубическая гранецентрированная (никель, медь, свинец) и гексагональная плотноупакованная (титан, цинк).

Сплавы -вещества, получаемые путем сплавления двух и более элементов. При этом образующийся сплав обладает совершено новыми качествами. Различают два вида сплавов: металлические и неметаллические. Металлические сплавы могут состоять либо только из металлов, либо из металлов с содержанием неметаллов. Неметаллические сплавы состоят из неметаллических веществ. Например, стекла, фарфора, ситаллов и других.

Сплавы классифицируют по числу сплавляемых элементов (компонентов): если два элемента – бинарный сплав; три – тройной сплав и т.д.

На основе совместимости атомов металлов, составляющих сплав в твердом состоянии, различают несколько типов сплавов. Наипростейший – когда при микроскопическом анализе сплава можно различить, что его зерна похожи на зерна чистых металлов; структура каждого зерна гомогенна. Такой тип сплава называют механической смесью. Бывают металлы, которые способны взаимно растворяться друг в друге в твердом состоянии, сплавы таких металлов называют твердыми растворами. Большинство золотых стоматологических сплавов являются твердыми растворами. Существуют металлические сплавы, относящиеся к типу интерметаллических соединений. Примером последних служит стоматологическая амальгама. Наибольшее число сплавов, применяемых в стоматологии, относится к твердым растворам.

Всеметаллические сплавы, применяемые в стоматологии, можно разделить на легкоплавкие(с температурой плавления до 300°C), относящиеся к вспомогательнымматериалам, и тугоплавкие. В свою очередь, тугоплавкие делятся на благородные сплавы (с температурой плавления до 1100°С)и неблагородные сплавы, температура плавления которых превосходит 1200°С (таблица №1).

Таблица №1

Стоматологические сплавы
БЛАГОРОДНЫЕ НЕБЛАГОРОДНЫЕ
Золотые сплавы Серебряно – палладиевые Co – Cr Ni – Cr Tj и Ti – сплавы хромоникелевые (нержавеющие стали)
Au – Pt – Pd Au - Pd Au – Pd - Ag Au – Pd – Ag – Cu Ag - Pd Ag – Pd – Cu Ag – Pd – Zn

Согласно международному стандарту ИСО 8891 – 98 к благородным сплавам относят сплавы, содержащие от 25 до 75% масс. золота и/или металлов платиновой группы, к последним относятся: платина, палладий, родий, иридий, рутений и осмий.

Золотые сплавы делят по количественному содержанию золота в них на сплавы с большим - более 75% и с малым - 45 – 60% содержанием золота. Получили широкое применение из-за высокой антикоррозийной стойкости.

В ортопедической стоматологии применяют следующие сплавы на основе золота:

а) сплав 900-916 пробы, температура плавления – 1050°C, содержит 91 % золота 4,5% меди, 4,5% серебра, материал желтого цвета, не окисляется в полости рта, обладает хорошими пластическими и литейными свойствами, применяют для изготовления коронок и мостовидных протезов;

б) сплав 750 пробы, температура плавления – 1050°С, более жесткий и упругий сплав, чем предыдущий, содержит 75% золота, 16,66% меди, 8,34% серебра, из этого сплава изготавливается плакировка для фарфоровых зубов и базисные пластинки для съемных протезов;

в) золотые сплавы с примесью платины могут содержать: 1) 75% золота, 4,15% платины, 8,35% серебра, 12,5% меди; 2) 60% золота, 20% платины, 5% серебра, 15% меди, обладают хорошими литейными качествами, применяются для изготовления каркасов бюгельных протезов, вкладок, полукоронок и кламмеров в съемных пластиночных протезах.

г) сплав 750 пробы, температура плавления – 800°С, содержит 75% золота, 5% серебра, 13% меди, 5% кадмия, 2% латуни, используется для изготовления припоя.

По механическим свойствам золотые сплавы делят на 4 типа (таблица №2):

· тип 1 – низкой прочности;

· тип 2 – средней прочности;

· тип 3 – высокой прочности;

· тип 4 – сверхпрочные сплавы.

Таблица №2

Состав сплавов золота различной механической прочности
Тип Характеристика Au (%) Ag (%) Cu (%) Pt (%) Pd (%) Zn (%)
Мягкий 80-90 3-12 2-5 - - -
Средний 75-78 12-15 7-10 0-1 1-4 0-1
Твердый 62-68 8-26 8-11 0-3 2-4 0-1
Сверхтвердый 60-70 4-20 11-16 0-4 0-5 1-2

 

Сплавы 1 типа рекомендуются для изготовления одноповерхностных вкладок. Поскольку они относительно мягкие и легко деформируются, необходимо обеспечить им соответствующую опору для предотвращения деформирования под воздействием жевательной нагрузки. Низкий предел текучести этих сплавов обеспечивает легкую полировку краев вкладки. Благодаря высокой пластичности они менее подвержены отколам.

Сплавы 2 типа рекомендуются для изготовления большинства видов вкладок.

Сплавы 3 типа используются для изготовления всех видов вкладок, накладок, искусственных коронок, небольших по протяженности мостовидных протезов и литых штифтов. Однако они труднее поддаются полированию.

Сплавы 4 типа используются для литых штифтов и создания искусственной литой культи под коронку, для всех видов мостовидных и съемных протезов при частичной потери зубов, для изготовления кламмеров.

Платина это самый тяжелый металл серовато-белого цвета с температурой плавления – 1770°С, является довольно мягким, ковким и вязким металлом с незначительной усадкой. Платина не окисляется на воздухе и при нагревании, не растворяется в кислотах, кроме царской водки. Применяется для изготовления коронок, штифтов, крампонов искусственных зубов. Платиновая фольга используется при изготовлении фарфоровых коронок и вкладок.

Серебро имеет белый цвет, температура плавления – 960°С. Серебро тверже золота и мягче меди. Является хорошим проводником электричества и тепла, неустойчиво к действию кислот. Применяется в составе серебряно-палладиевого сплава, который состоит из 50-60% серебра, 27-30% палладия, 6-8% золота, 3% меди, 0,5% цинка, имеет температуру плавления 1100-1200°С, обладает выраженными антисептическими свойствами, применяется для изготовления вкладок, коронок, мостовидных протезов.

В ортопедической стоматологии используют следующие неблагородные сплавы: на основе железа, хрома, кобальта, никеля; на основе меди, никеля, титана, алюминия, ниобия, тантала.

В нашей стране широко используется нержавеющая сталь, или её называют хромоникелевая (типа 1Х18Н9Т), имеет высокие физико-механические свойства, химическую стойкость, хорошо прокатывается, вытягивается и профилируется, обладает хорошей пластичностью и ковкостью после термической обработки, что имеет большое значение в процессе штамповки коронки, после закаливания не деформируется. Металл бело-серебристого цвета, температура плавления 1450°С. Содержит: 72% железа, 18% хрома, 9% никеля, 1% титана. Хром придает сплаву коррозийную стойкость, никель пластичность, усиливает вязкость, делает его ковким. Никель, входящий в состав сплава, нельзя признать полностью биосовместимым металлом, так как он обладает токсичностью и может вызывать аллергические реакции. Для улучшения литейных свойств добавляют титан, что придает стали высокие механические свойства. Область применения: коронки, мостовидные протезы, кламмеры, ортодонтические аппараты, литые детали.

КХС – сталь кобальтохромовая.Состав: 67% – кобальт, 26% – хром, 6% – никель, остальное – Fe. Материал серебристо-белого цвета, с температурой плавления 1460°С. Некоторые кобальтохромовые сплавы, например «Vitallium» состоят из 60,6% – кобальта, 31,5 % – хрома, 6% – молибдена. В КХС может добавляться марганец и легирующий элемент - титан. Кобальт, имеет высокие механические свойства. Хром увеличивает коррозийную стойкость сплава и уменьшает его способность к потускнению. Молибден придает сплаву металлокристаллическую структуру, что также усиливает прочность. Марганец повышает качество литья, понижает температуру плавления, способствует удалению газов и сернистых соединений. В настоящее время используют углеродсодержащие (бюгодент ССS, бюгодент ССЕ, бюгодент ССН) и не содержащие углерод (КХ-дент СS, КХ-дент СЕ, КХ-дент Сl) виды кобальтохромомолибденовых сплавов.

КХС не окисляется, не поддается ковке, но обладает отличными литейными качествами, практически не дает усадки при литье и относится к прецизионным сплавам, т.е. точным. Применяется: при изготовлении каркасов бюгельных протезов, литых мостовидных, а также металлокерамических и металлопластмассовых протезов.

Сплавы титана биологически инертны, имеют высокую удельную прочность, отличную химическую стойкость по отношению ко многим агрессивным средам, низкий коэффициент усадки при литье, не токсичны и доступны. В клиническом аспекте наибольший интерес представляют две формы титана. Это технически чистая форма титана и сплав титана - 6% алюминий - 4% ванадий. Для изготовления металлокерамических конструкций использует сплав Ti-6AG-4V. Для изготовления вкладок, штифтовых конструкций, коронок, мостовидных протезов, каркасов бюгельных протезов, имплантов, а также мелкого медицинского инструментария применяют сплавы BT1Л, ВТ5Л, ВТ6Л.

В имплантологии широко применяют следующие сплавы титана: ВТ1-00, ВТ1-010, ВТ1Л, ВТ5Л, 6ЛВТЗ-1, Ti-6AG-4V, TiNi (никелид титана). Из соединений титана в зуботехнической практике применяется двуокись титана. Она представляет собой белый порошок, который используется в качестве замутнителя при производстве пластмасс, а так же при приготовлении лаков для покрытия металлических частей зубных протезов.

Литье титановых сплавов представляет серьезную технологическую проблему. Титан имеет высокую температуру плавления (~1670°С), что затрудняет компенсацию усадки отливки при охлаждении. В связи с высокой реакционной способностью металла, литье необходимо выполнять в условиях вакуума или в инертной среде, что требует использования специального оборудования. Другая проблема заключается в том в том, что расплав имеет тенденцию вступать в реакцию с литейной формой из огнеупорного формовочного материала, образуя слой окалины на поверхности отливки, что снижает качество прилегания протеза. В титановых отливках также часто можно наблюдать внутреннюю пористость. Поэтому используются и другие технологии для изготовления зубных протезов из титана, например, такие как CAD/САМ_технологии в сочетании с прокаткой и методом искровой эрозии.

Сплавы, применяемые в ортопедической стоматологии, по определенным свойствам можно разделить на две группы. К первой группе относятся сплавы, обладающие общемедицинскими свойствами. Они не должны вызывать в полости рта аллергического и токсического действия. Во вторую входят сплавы с определенными технологическими свойствами: высокой антикоррозийной стойкостью; прочностью; твердостью; малой усадкой при литье; невысокой температурой плавления; ковкостью, текучестью при литье; возможностью паяния и сварки; хорошей механической и электролитической обработкой и полировкой. Все эти требования зависят от свойств компонентов, входящих в сплав.

Различают механические, физические, технологические и химические свойства конструкционных материалов.

Механические свойства материалов –это способность материалов сопротивляться деформирующемуи разрушающему воздействию внешних механических сил в сочетании соспособностью при этом упруго и пластически деформироваться.

Деформацией называется изменение размеров и формы тела под действием приложенных к нему сил. Деформация может быть упругой и пластичной. Первая исчезает после снятия нагрузки. Она не вызывает изменений структуры, объема и свойств металлов и сплавов. Вторая не устраняется после снятия нагрузки и вызывает изменение структуры, объема, и свойств металлов и сплавов. Пластическая деформация приводит к изменению физических свойств металла, а именно: к повышению электросопротивления, уменьшению плотности, изменению электромагнитных свойств. Упрочнение металла под действием пластической деформации еще называется наклепом. Имеющие наклеп металлы более склонны к коррозионному разрушению при эксплуатации.

Выделяютследующие механические свойства: твердость, прочность, упругость, пластичность.

Твердостьюназывается способность тела оказывать сопротивление при внедрении в его поверхность другого тела. Это важная характеристика материала, позволяющая судить о способности материала сопротивлятьсяизносу.

Прочностьюназывают способность материала сопротивляться действию внешних сил, не разрушаясь и не деформируясь. Это одно из основных требований, предъявляемых к материалам, из которых изготавливаютвсе виды протезов. Прочность материала зависит от его природы, строения,размеров изготовленных из него изделий, величины нагрузок и характера ихдействия.

Упругость– это способность материала изменять форму под действием внешней нагрузки и восстанавливать форму после снятия этой нагрузки. Наглядным примером упругих свойств материала может служить растяжение металлической пружины и изгиб стальной проволоки. После устранениядействия силы все эти тела приобретают прежнюю форму.

Пластичностьсвойство материала, не разрушаясь, изменять форму под действием нагрузок и сохранять эту форму после того, как нагрузка перестает действовать.Этим свойством обладают многие слепочные массы, воск, металлы.

К физическим свойствамматериалов относятся цвет, плотность, плавление, теплопроводность, тепловое расширение и сжатие при нагревании и охлаждении.

Цветматериала играет важную роль совпадать с цветом тех тканей, которые он замещает. Все металлы не соответствуют этому требованию, но пластмассы и фарфор, наоборот, могут быть приведены в точное соответствие с цветом близлежащих тканей.

Плотностьюназывается количество данного вещества, содержащегося в единице объема. Это свойство имеет большое значение при выборе материала для изготовления различных конструкций протезов. Зная плотность материала, можно легко вычислить, какой будет масса всего изделия, изготовленного из этого материала.

Плавлениеэто переход тела из твердого состояния в жидкое под действием тепла. Твердые тела переходят в жидкое состояние при разной температуре, которая называется температурой плавления.

Тепловое расширение– это способность тел расширяться при нагревании, т.е. в большей или меньшей степени изменять линейные и объемные размеры. При охлаждении этих тел наблюдается обратное явление – уменьшение объема или сжатие. В стоматологической практике постоянно приходится иметь дело с телами, обладающими разными коэффициентами линейного и объемного расширения. Если не учесть коэффициента теплового расширения, то отлитые металлические детали не будут соответствовать заготовленной детали вследствие усадки при охлаждении.

Технологические свойстваэто свойства, определяющие пригодность материала к обработке и возможность применения его в тех или иных условиях. Наиболее важными для ортопедической стоматологии являются ковкость, усадка и текучесть.

Ковкостьэто способность материала поддаваться обработке давлением, принимать новую форму и размеры под действием прилагаемой нагрузки без нарушения целостности. Свойство ковкости присуще многим металлам и почти отсутствует у пластмасс.

Под текучестьюпонимают способность материала в жидком, пластифицированном или расплавленном состоянии заполнять тонкие места литьевой или прессовочной формы. Это свойство материалов в ортопедической стоматологии используется для изготовления литых деталей из металлов, протезов из пластмассы.

Усадка – этоуменьшение объема отлитой или отпрессованной детали при охлаждении или затвердении материала при переходе из одного состояния в другое и хранении. Она зависит от свойств материалов, степени их нагрева и способа охлаждения.

Под химическими свойствамиматериалов понимают отношение материалов к другим химическим веществам, в частности, их поведение в различных средах: кислотах, щелочах, растворах солей, воде и на воздухе. К химическим свойствам относят растворимость, окисляемость, жаростойкость.

Широко известны такие явления как коррозия металла и гальванизм. Зубные протезы в полости рта постоянно подвергаются воздействию химически активных веществ. Если материал, из которого они изготовлены, будет вступать во взаимодействие с жидкостями полости рта, то он будет разрушаться, и образующиеся в результате реакции вещества, попадая в организм, могут оказать на него вредное воздействие. Поэтому основным требованием, предъявляемым к материалам, является их абсолютная химическая стойкость в полости рта.

Взаимодействие между металлом и полости рта первоначально может заключаться в некоторой адсорбции компонентов этой среды поверхностью металла. При определенных условиях адсорбция может привести к возникновению химических реакций, которые чаще всего приводят к коррозии, т.е. процессу разрушения металлов вследствие их химического или электрохимического взаимодействия с окружающей средой, ротовой жидкостью, слюной, пищей. Усилению процессов коррозии способствуют и знакопеременные нагрузки, которые претерпевают металлические конструкции в полости рта.

Характер коррозии металлов различают по: а) форме разрушения; б) механизму процесса.

По форме разрушения коррозии делят на: 1) равномерную (сплошную); 2) местную;

3) межкристаллитную.

По механизму процесса различают: 1) химическую; 2) электрохимическую коррозию.