Предыстория электродвигателя

 

Сложный и трудный путь прошла наука о гальваническом электричестве, прежде чем был создан первый практически пригодный электродвигатель. В нем как в фокусе зеркала сконцентрировались все важнейшие открытия и изобретения многих ученых разных стран 20-х и 30-х гг. XIX в. Все началось с создания первого источника постоянного электрического тока - вольтова столба, с изучения химических, тепловых и магнитных действий тока и с установления законов электрической цепи. Важное значение для всей электротехники, для предыстории электродвигателя имело изучение магнитных действий тока. Впервые факт действия электрического тока на магнитную стрелку твердо был установлен Г. X. Эрстедом.Интеpеcнa история этого открытия . Идею о cвязи между электрическими и магнитными явлениями Эpcтед высказал еще в первом десятилетии X1X в. Oн полагал, что в явлениях природы, несмотря на все их многообразие , имеются сходство, что все они связаны между собой. Pyкoвoдcтвyяcь этой идеей, он поставил перед собой задачу выяснить на опыте, в чем эта связь проявляется. Эрстед открыл , что если над проводником , направленным вдоль земного меридиана , поместить магнитную стрелку , которая показывает на север , и по проводнику пропустить электрический ток, то стрелка отклоняется на некоторый угол .После того, как Эрстед опубликовал свои открытия , многие физики занялись исследованием этого явления .Французские ученые Био и Савар постарались установить закон действия тока на магнитную стрелку , т.е. определить , как и от чего зависит сила , действующая на магнитную стрелку , когда она помещена около электрического тока .Они установили , что сила действующая на магнитный полюс ( на конец длинного магнита) со стороны прямолинейного проводника с током направлена перпендикулярно к кратчайшему расстоянию от полюса до проводника , и модуль ее обратно пропорционален этому расстоянию. Познакомившись с работой Био и Савара можно было заметить , что для расчета «магнитной» силы , т.е. , говоря современным языком , напряженности магнитного поля , полезно рассматривать действие очень малых отрезков с током на магнитный полюс. Из измерений Био и Савара следовало, что если ввести понятие элемента проводника Dl , то сила DF , действующая со стороны этого элемента на полюс магнита , будет пропорциональна DF ~ (Dl/r2)*Sin a, где D l - элемент проводника , a - угол , образованным этим элементом и прямой , проведенной из элемента Dl в точку , в которой определяется сила , а r - кратчайшее расстояние от магнитного полюса до линии , являющееся продолжением элемента проводника .Paздyмывaя над открытием Эpcтeдa, Aмпep пришел к coвepшенно новым идеям, Oн предположил, что магнитные явления вызывaютcя взаимодействием электрических токов. Kaждый магнит представляет собой систему замкнутых электpичеcкиx токов, плоскости кoтopыx перпендикулярны ocи магнита, Bзaимoдeйcтвиe магнитов ,их притяжение и oттaлкивaние объясняются пpитяжeниeм и отталкиванием, cyщecтвyющими между токами. Зeмнoй магнетизм также обусловлен электрическими токами, которые протекают в земном шape. Этaгепoтизa требовала, конечно, опытного пoдтвеpждeния. И Aмпep проделал целyюcepиюoпытoв для ее oбocнoвaния.ПepвыeoпытыAмпepa заключались в обнаружении сил, действующих между проводниками, по которым течет электрический ток. Опыты показали, что два прямолинейных проводника с током, расположенные параллельно друг другу, притягиваются, если токи в них имеют одинаковое направление, и отталкиваются, если направление токов противоположно.Ампepпoкaзaлтaкже, чтoвитoк c тoкoм и cпиpaлевидныйпpoвoдник c тoкoм (coленoид) ведyтceбякaкмaгниты. Двaтaкиxпрoвoдпикaпpитягивaютcя и oттaлкивaютcяпoдoбнoдвyммaгнитнымcтpелкaм.Свои первые сообщения о результатах опытов Ампер сделал на заседаниях Пapижcкoй академии наук осенью 1820 г. Пocлe этого он занялся разработкой теории взaимoдейcтвия проводников, по которым течет электрический ток. Ампер решил в основу теории взаимодействия токов положить закон взaимoдейcтвия между элементaми токов. Нужно отметить, что Ампер говорил уже не просто о взаимодействии элементов проводников, как Био и Савар, а о взаимодействии элементов токов, так как к тому времени уже возникло понятие силы тока. И это понятие ввел сам Aмпep.Однако вследствие того что Aмпep проводил опыты с замкнутыми постоянными токами, он получал при расчетах по своей формуле правильные результаты. Оказывается, что для замкнутых проводников формула Ампера приводит к тем же результатам, что и исправленная впоследствии формула, выражающая силу взаимодействия между элементами токов, которая по-npежнeмy носит название закона Ампера. Огромную роль в науке об электричестве сыграл созданный У. Стердженом в 1825 г. первый электромагнит. Его устройство было простым. Он представлял собой стержень из мягкого железа, покрытого для изоляции лаком, на который была намотана проволока. По сравнению с распространенными тогда постоянными магнитами этот электромагнит обладал значительными преимуществами, так как давал более сильный эффект. Новый этап в развитии электротехники неразрывно был связан с именем М. Фарадея. Электрический ток вызывал магнитные действия, и вполне естественно было предположить, что и магнитные явления могут вызвать появление электрического тока. В 1831 г. в результате многолетних опытов М. Фарадею удалось осуществить «превращение магнетизма в электричество». Так было сделано одно из великих открытий XIX в. открытие электромагнитной индукции, оказавшее огромное воздействие на все последующее развитие электротехники. Опытами Фарадея было установлено, что электромагнитная индукция возникает как в неподвижном проводнике, находящемся в изменяющемся магнитном поле, так и в проводнике, который перемещается в неизменном магнитном поле. Введя понятие о магнитных силовых линиях, образующих магнитное поле, ученый доказал, что наведение тока в проводнике будет происходить только тогда, когда изменяется магнитный поток через контур. Открытие электромагнитной индукции дало возможность Фарадею понять и причину вращения магнитной стрелки при вращении диска, т. е. причину явления, открытого Араго. Он объяснил это взаимодействием наводимых в диске токов с магнитным полем. На основе изучения опыта Араго зародилась идея создания нового источника электрической энергии, которая практически была реализована только во 2-й половине XIX в. В 1834 г. электротехника обогатилась новым фундаментальным законом, открытым Э. X. Ленцем. Обобщая опыты Фарадея по электромагнитной индукции, он в результате своих исследований сформулировал закон, дававший возможность точно определить направление индуцированного тока. Так впервые в науке был сформулирован фундаментальный принцип обратимости. Ленц не только теоретически, но и экспериментально доказал, что, если вращать катушку между полюсами магнита, она будет генерировать электрический ток, и наоборот, если в нее послать ток, она будет вращаться. Это обстоятельство значительно позднее сыграло решающую роль в развитии всего электромашиностроения. В 30-50-х гг. XIX в. одновременно с разработкой теоретических предпосылок, необходимых для создания первых электродвигателей и первых генераторов электрического тока, в ряде стран ученые и изобретатели настойчиво пытались практически реализовать эти предпосылки. Началось с создания физических приборов, с помощью которых можно было только опытным путем демонстрировать преобразование электрической энергии в механическую. Первый такой прибор был построен Фарадеем в 1821 г. С его помощью ученый установил, что электрический ток, проходящий по проводнику, может заставить этот проводник совершать вращение вокруг магнита или, наоборот, вызывать вращение магнита вокруг проводника. Важнейшее значение этого опыта заключалось в том, что он наглядно показал принципиальную возможность построения электродвигателя. В 1824 г. П. Барлоу также наглядно с помощью другого прибора продемонстрировал возможность превращения электрической энергии в механическую. Он расположил горизонтально два П-образных постоянных магнита и под ними поместил два медных зубчатых колесика, сидящих на одной оси. Когда через колесики пропускался ток, они начинали вращаться в одном и том же направлении. Ученый при этом заметил, что перемена полярности контактов или перемена полюсов магнитов изменяла направление вращения колесиков. Этот прибор вошел в науку под названием «колеса Барлоу». В настоящее время он используется только в качестве демонстрационного прибора. Практического значения колесо Барлоу не имело. Однако в 20-х гг. XIX в. прибор сыграл свою роль, направив поиски экспериментаторов на создание практически пригодного электродвигателя. Интересная модель электродвигателя в 1831 г. была предложена Д. Генри в статье «О качательном движении, производимом магнитным притяжением и отталкиванием». Конструктивно форма, предложенная Генри, интересна тем, что в ней впервые была сделана попытка использовать притяжение разноименных и отталкивание одноименных магнитных полюсов для получения качательного движения. В модели, построенной ученым, электромагнит совершал 75 качаний в минуту, а мощность двигателя была равна 0,044 Вт. Поэтому о его практическом применении не могло быть и речи. В моделях электродвигателей Генри и Даль-Негро был использован принцип возвратно-поступательного движения. На этом же принципе работал паровой двигатель. Об исключительной живучести этой идеи говорят и такие факты: первые изобретатели парохода предлагали использовать паровой двигатель для приведения в движение весел с тем, чтобы заменить гребцов, а первые изобретатели паровоза хотели создать передвигающийся механизм, подражающий движению ног лошади.