Электронно-лучевая наплавка

Электронно-лучевая наплавка (ЭЛН) осуществляется в вакууме за счет плавления основного и присадочного материалов с помощью электронного луча. Как лазерный, так и электронный луч являются высококонцентрированным источником энергии. По сравнению с низким КПД нагрева при лазерной обработке (3 – 7 %) электронно-лучевая наплавка имеет более высокий КПД, составляющий 85 – 95 %. Электронный пучок позволяет раздельно регулировать нагрев и плавление основного и присадочного материалов, а также свести к минимуму их перемешивание. Наплавка производится с присадкой сплошной или порошковой проволоки. Так как наплавка производится в вакууме, то шихта порошковой проволоки может состоять из одних легирующих компонентов.

В состав установки для электронно-лучевой наплавки износостойких покрытий входят вакуумная камера 1(рис. 8.11) с откачными средствами, механический манипулятор 7 с электроприводом 6, устройство 8 для дозированной подачи порошкового материала в зону расплава и электронный источник 2. Устройство для питания электронного источника состоит из блока питания разряда 3, высоковольтного блока 4, блоков питания фокусирующей катушки и отклоняющей системы 5. Порошковый дозатор 8 обеспечивает стабильную подачу наплавляемого материала в зону действия электронного луча, а блок управления формирует развертку луча в виде одной или нескольких линий, направленных поперек движения наплавляемого изделия 9. Высоковольтный блок 4 служит для преобразования сетевого трехфазного напряжения в выпрямленное высокое напряжение. Манипулятор 6 служит для перемещения изделия в процессе наплавки.

Для ЭЛН в вакууме пригодны порошки дисперсностью 50 – 350 мкм. При дисперсности менее 50 мкм порошки недостаточно сыпучи в вакууме и поэтому трудно обеспечить их подачу непосредственно в ванну расплава. Для расплавления порошков крупнее 350 мкм требуется больше энергии, что приводит к дополнительному проплавлению основы, увеличению остаточных напряжений и росту зерна в покрытии.

Параметрами, характеризующими процесс наплавки, являются: ускоряющее напряжение, ток электронного пучка, расстояние фокусирующей системы до поверхности обрабатываемой детали, диаметр и длина развертки пучка, скорость перемещения детали.

В основном покрытия, полученные ЭЛН, применяют для защиты поверхностей, подвергающихся различным видам абразивного и эрозионного изнашивания. Так как технология ЭЛН удобна для нанесения «толстых» покрытий, то её применяют для восстановления деталей с толщиной изношенного слоя до 10 мм. Освоены технологические процессы восстановления и упрочнения новых деталей машин и инструмента широкой номенклатуры.

Химический и фазовый состав наплавляемого покрытия выбирают с учетом условий работы конкретной детали. При этом износостойкость покрытий, полученных ЭЛН, значительно превышает износостойкость покрытий, наносимых традиционными методами (в 2 – 5 раз) по сравнению с намыленными порошковыми покрытиями и в 1,5 – 2 раза по сравнению с намыленными и оплавленными порошковыми покрытиями.

Основные достоинства ЭЛН: малое проплавление основного металла; возможность наплавки слоев малой толщины.

Основные недостатки ЭЛН: сложность и высокая стоимость оборудования; необходимость биологической защиты персонала.