Автоматизированный электропривод

Современный электропривод представляет собой конструктивное единство электромеханического преобразователя энергии (двигателя), силового преобразователя и устройства управления. Он обеспечивает преобразование электрической энергии в механическую в соответствии с алгоритмом работы технологической установки. Сфера применения электрического привода в промышленности, на транспорте и в быту постоянно расширяется. В настоящее время уже более 60% всей вырабатываемой в мире электрической энергии потребляется электрическими двигателями. Следовательно, эффективность энергосберегающих технологий в значительной мере определяется эффективностью электропривода. Разработка высокопроизводительных, компактных и экономичных систем привода является приоритетным направлением развития современной техники. Последнее десятилетие уходящего века ознаменовалось значительными успехами силовой электроники – было освоено промышленное производство биполярных транзисторов с изолированным затвором (IGBT), силовых модулей на их основе (стойки и целые инверторы), а также силовых интеллектуальных модулей (IPM) с встроенными средствами защиты ключей и интерфейсами для непосредственного подключения к микропроцессорным системам управления. Рост степени интеграции в микропроцессорной технике и переход от микропроцессоров к микроконтроллерам с встроенным набором специализированных периферийных устройств, сделали необратимой тенденцию массовой замены аналоговых систем управления приводами на системы прямого цифрового управления.Под прямым цифровым управлением понимается не только непосредственное управление от микроконтроллера каждым ключом силового преобразователя (инвертора и управляемого выпрямителя, если он есть), но и обеспечение возможности прямого ввода в микроконтроллер сигналов различных обратных связей (независимо от типа сигнала: дискретный, аналоговый или импульсный) с последующей программно-аппаратной обработкой внутри микроконтроллера. Таким образом, система прямого цифрового управления ориентирована на отказ от значительного числа дополнительных интерфейсных плат и создание одноплатных контроллеров управления приводами. В пределе встроенная система управления проектируется как однокристальная и вместе с силовым преобразователем и исполнительным двигателем конструктивно интегрируется в одно целое – мехатронный модуль движения.

Рассмотрим обобщенную структуру электропривода (рис. 6.25). В ней можно выделить два взаимодействующих канала – силового, выполняющего передачу и преобразование энергии из электрической в механическую, и информационного.

В зависимости от требований к электроприводу в качестве электромеханического преобразователя используются различные электрические машины: асинхронные и синхронные переменного тока, коллекторные и бесколлекторные постоянного тока, шаговые, вентильно-реактивные, вентильно-индукторные и т. д.

Информационный канал предназначен для управления потоком энергии, а также сбора и обработки сведений о состоянии и функционировании системы, диагностики ее неисправностей. Информационный канал может взаимодействовать со всеми элементами силового канала, а также с оператором, другими системами электропривода и системой верхнего уровня управления.

 

Рис. 6.25. Обобщенная структура электропривода

Долгое время массовое применение регулируемых приводов сдерживалось двумя факторами:

относительно малыми допустимыми значениями токов, напряжений и частоты переключений силовых полупроводниковых приборов;

ограничением сложности алгоритмов управления, реализуемых в аналоговой форме или на цифровых микросхемах малой и средней степени интеграции.

Появление тиристоров на большие токи и напряжения решило проблему статического преобразователя для электропривода постоянного тока. Однако необходимость принудительного закрывания тиристоров по силовой цепи существенно усложняла создание автономных инверторов для частотноуправляемого электропривода переменного тока. Появление мощных полностью управляемых полевых транзисторов, обозначаемых в зарубежной литературе MOSFET (Metal – Oxide – Semiconductor Field Effect Transistor), и биполярных транзисторов с изолированным затвором IGBT (Isulated Gate Bipolar Transistor) привело к бурному развитию преобразовательной техники и постоянному расширению сферы применения асинхронных электроприводов с преобразователями частоты. Другим фактором, обусловившим возможность массового внедрения частотноуправляемого электропривода, было создание однокристальных микроконтроллеров достаточной вычислительной мощности.

Анализ продукции ведущих мировых производителей систем привода и материалов опубликованных научных исследований в этой области позволяет отметить следующие ярко выраженные тенденции развития электропривода:

Неуклонно снижается доля систем привода с двигателями постоянного тока и увеличивается доля систем привода с двигателями переменного тока. Это связано с низкой надежностью механического коллектора и более высокой стоимостью коллекторных двигателей постоянного тока по сравнению с двигателями переменного тока. По прогнозам специалистов в начале следующего века доля приводов постоянного тока сократится до 10 % от общего числа приводов.

Преимущественное применение в настоящее время имеют привода с короткозамкнутыми асинхронными двигателями. Большинство таких приводов (около 80 %) – нерегулируемые. В связи с резким удешевлением статических преобразователей частоты доля частотно-регулируемых асинхронных электроприводов быстро увеличивается.

Естественной альтернативой коллекторным приводам постоянного тока являются привода с вентильными, т. е. электронно-коммутируемыми двигателями. В качестве исполнительных бесколлекторных машин постоянного тока (БМПТ) преимущественное применение получили синхронные двигатели с возбуждением от постоянных магнитов или с электромагнитным возбуждением (для больших мощностей). Этот тип привода наиболее перспективен для станкостроения и робототехники, однако, является самым дорогостоящим. Некоторого снижения стоимости можно добиться при использовании синхронного реактивного двигателя в качестве исполнительного.

Приводом следующего века по прогнозам большинства специалистов станет привод на основе вентильно-индукторного двигателя (ВИД). Двигатели этого типа просты в изготовлении, технологичны и дешевы. Они имеют пассивный ферромагнитный ротор без каких-либо обмоток или магнитов. Вместе с тем, высокие потребительские свойства привода могут быть обеспечены только при применении мощной микропроцессорной системы управления в сочетании с современной силовой электроникой. Усилия многих разработчиков в мире сконцентрированы в этой области. Для типовых применений перспективны индукторные двигатели с самовозбуждением, а для тяговых приводов – индукторные двигатели с независимым возбуждением со стороны статора. В последнем случае появляется возможность двухзонного регулирования скорости по аналогии с обычными приводами постоянного тока.

6.2.1. Асинхронные электроприводы
со скалярным управлением

Скалярные способы управления обеспечивали достижение тре­буемых статических характеристик и использовались в электропри­водах со «спокойной» нагрузкой [11]. На входе этих систем, как прави­ло, включались задатчики интенсивности, которые ограничивали скорость нарастания (убывания) входного сигнала до такой величи­ны, при которой процессы в системе можно считать установившимися, то есть в уравнении можно было бы пренебречь слагаемым , так как .

На рис. 6.26 приведены механические характеристики асинхрон­ного короткозамкнутого двигателя для всех четырех законов управ­ления для линейной модели, не учитывающей насыщение магнитопровода. Следует повторить, что перечисленные законы управления широко использовались и хорошо себя зарекомендовали в электро­приводах, где не требуется быстродействия по управлению и нет резких изменений момента нагрузки.

 

Рис. 6.26. Механические характеристики АКЗ
при различных законах управления

Простейшим из перечисленных законов является первый: .Этот закон при использовании инвертора с синусоидальной ШИМ реализован практически во всех полупроводнико­вых преобразователях, которые выпускаются многочисленными фирмами и предлагаются на рынке. Удобство этого закона заключа­ется в том, что электропривод может работать без отрицательной обратной связи по скорости и обладать естественной жесткостью механических характеристик в ограниченном диапазоне регулиро­вания скорости.

В электроприводах со скалярным управлением для регулирова­ния или стабилизации скорости используются и иные соотношения между частотой и напряжением. Выбор этого соотношения зависит от момента нагрузки и определяется из условий сохранения пере­грузочной способности:

 

, (6.15)

где Мmax – максимальный момент АКЗ, ΜНмомент нагрузки на валу машины.

Закон изменения напряжения и частоты, удовлетворяющий тре­бованию (6.15) при допущении rs = 0, установлен
М.П. Костенко. Этот закон имеет вид

 

,

где UНОМ, fНОМ, ΜНОМ номинальные значения, приводимые в паспортных данных машины.

Если закон изменения момента заранее известен, то можно оп­ределить требуемое соотношения напряжения и частоты на выхо­де инвертора. Рассмотрим три классических вида нагрузок на валу машины:

MH = const, ; PH = MHwm = const, ; . (6.16)

В имеющихся на рынке преобразователях часто предусматри­вается возможность перестройки с целью обеспечения всех трех законов. Схема электропривода, реализующая рассмотренные за­коны, показана на рис. 6.27. Функциональный преобразователь (ФП) реализует одну из зависимостей (6.16), определяемую харак­тером нагрузки. Полупроводниковый преобразователь (ПП) вклю­чает в себя автономный инвертор и его систему управления, задатчик интенсивности (ЗИ), как уже было отмечено, формирует медленно нарастающий входной сигнал. В этом случае в электроприводе нарастание скорости не будет сопровождаться интенсивными колебаниями момента и тока, которые наблюдаются при прямом пуске.

 

Рис. 6.27. Функциональная схема разомкнутого асинхронного
электропривода со скалярным управлением

 

При более сложных нагрузках используются иные законы скалярного регулирования, которые реализуются с использованием обратных связей. Эти законы рассмотрены выше на основании анализа работы асинхронной машины в установившемся режиме.

Рассмотрим ещё один скалярный закон управления, который используется при построении электроприводов с автономными инверторами тока – это закон ψR = const.

Реализация этой зависимости в электроприводе показана на функциональной схеме (рис. 6.28). Такие системы получили назва­ние частотно-токовых.

Блок ПП в системе может быть реализован двояким способом. В первом случае (рис. 6.28) он содержит управляемый выпрямитель, последовательный индуктивный фильтр и автономный инвертор. Следует подчеркнуть, что индуктивный фильтр придаёт инвертору характеристику источника тока. Такой источник тока называется параметрическим.

 

Рис. 6.28. Функциональная схема асинхронного
электропривода со скалярным управлением

6.2.2. Асинхронные электроприводы
с векторным управлением

На рис. 6.29 показана структура привода переменного тока с векторным управлением. В качестве исполнительного двигателя может применяться либо синхронный двигатель с активным магнитоэлектрическим ротором, либо синхронный реактивный двигатель. Возможно использование этой структуры и для управления трехфазными вентильно-индукторными двигателями с разнополярным питанием, а также шаговыми двигателями в режиме бесколлекторных двигателей постоянного тока.

В качестве силового преобразователя используется инвертор на IGBT-ключах или интеллектуальных силовых модулях. Драйверы ключей инвертора подключены непосредственно к выходам ШИМ-генератора микроконтроллера, работающего в режиме широтно-импульсной модуляции базовых векторов (векторной ШИМ-модуляции), что обеспечивает максимально высокую степень использования напряжения звена постоянного тока и минимизацию динамических потерь в инверторе (ниже более подробно).

 

Рис. 6.29. Структурная схема привода
переменного тока с векторным управлением

Структура на рис. 6.29 предполагает использование импульсного датчика положения ротора двигателя. Сигналы с датчика вводятся непосредственно в контроллер и обрабатываются в блоке оценки положения, который может быть реализован на основе специального периферийного устройства – таймера с «квадратурным» режимом работы. Код механического положения ротора программно преобразуется в код электрического положения ротора внутри полюсного деления машины q. Для реализации блока оценки скорости могут применяться либо специальные периферийные устройства микроконтроллера, принцип действия которых основан на измерении временного интервала отработки двигателем заданного отрезка пути (эстиматоры скорости), либо периферийные устройства общего назначения, такие как процессоры событий или менеджеры событий. В последнем случае таймер, работающий в «квадратурном» режиме является базовым для одного из каналов сравнения. Как только двигатель отработает заданный отрезок пути, возникнет прерывание по сравнению. В процедуре обслуживания этого прерывания центральный процессор определит временной интервал с момента предыдущего прерывания и выполнит расчет текущей скорости привода w. Желательно, чтобы таймер, работающий в «квадратурном» режиме допускал начальную инициализацию в соответствии с числом меток на оборот импульсного датчика положения, а также имел режим автоматической коррекции своего состояния по реперному датчику. Эстиматор скорости должен работать с регулируемым разрешением как по числу импульсов на периоде измерения скорости (от 1 до 255), так и с регулируемым разрешением по времени (максимальное разрешение 50 – 100 нс при диапазоне регулирования разрешения 1:128). Если перечисленные выше требования к периферийным устройствам микроконтроллера будут выполнены, то окажется возможным измерение скорости в диапазоне, как минимум, 1:20000 с точностью, не хуже 0,1%. Для измерения электрических переменных микроконтроллер должен иметь встроенный АЦП с разрешением не ниже 10 – 12 двоичных разрядов и временем преобразования не хуже 5 – 10 мкс. Как правило, восьми каналов АЦП достаточно для приема не только сигналов обратных связей по токам фаз, но и сигналов обратных связей по напряжению и току в звене постоянного тока, а также внешних задающих сигналов. Дополнительные аналоговые сигналы используются для реализации защит инвертора и двигателя. Работа АЦП будет более производительной, если микроконтроллер допускает режим автоматического сканирования и запуска процесса преобразования. Обычно это делается либо с помощью отдельного периферийного устройства – процессора периферийных транзакций, либо с помощью режима автозапуска АЦП от процессора событий или генератора ШИМ-сигналов. Желательно, чтобы выборка как минимум двух аналоговых сигналов была одновременной.

В блоке векторной ШИМ-модуляции выполняется сначала преобразование компонент вектора напряжения к полярной системе координат (g, r), связанной с продольной осью ротора, а затем, с учетом текущего положения ротора q, определяется рабочий сектор, внутрисекторный угол и рассчитываются компоненты базовых векторов в абсолютной системе координат, связанной со статором. Формируются напряжения, прикладываемые к обмоткам двигателя Ua, Ub, Uc. Все перечисленные выше преобразования координат (прямые и обратные преобразования Парка и Кларка) должны выполняться в реальном времени. Желательно, чтобы используемый для реализации системы векторного управления микроконтроллер имел встроенную библиотеку функций, адаптированных для эффективного управления двигателями, в том числе функций преобразования координат. Время реализации каждой из этих функций не должно превышать нескольких микросекунд.

Отличительной особенностью системы векторного управления асинхронными двигателями является необходимость использования дополнительного вычислительного блока, в котором производится оценка текущего углового положения вектора потокосцепления ротора. Это делается на основе решения в реальном времени системы дифференциальных уравнений, составленных в соответствии с математической моделью двигателя. Естественно, что подобная операция требует дополнительных вычислительных ресурсов центрального процессора.

6.2.3. Вентильные и бесконтактные
машины постоянного тока

Бесконтактные машины постоянного тока (БМПТ) и вен­тильные машины (ВМ) – это синхронный двигатель в замкнутой системе (рис. 6.30), реализованной с использова­нием датчика положения ротора (ДПР), преобразователя координат (ПК) и силового полупроводникового преобра­зователя (СПП).

Разница между БМПТ и ВМ заключается только в способе фор­мирования напряжения на выходе силового полупроводникового преобразователя. В первом случае формируется импульсное напряжение (ток) на обмотках машины. Во втором случае на выходе СПП форми­руется синусоидальное или квазисинусоидальное напряжение (ток).

Следует заметить, что БМПТ отличаются от шаговых машин тем, что включены в замкнутую систему формирования напряже­ния. В них напряжение формируется в зависимости от положения ротора, и это является их принципиальным отличием от шаговых, в которых положение ротора зависит от числа управляющих им­пульсов.

 

Рис. 6.30. Функциональная схема БМПТ и ВМ


Особняком в ряду синхронных машин стоят гистерезисные и реактивные двигатели. Эти машины редко используются в электро­приводе.

Из всех рассмотренных типов синхронных машин в управляе­мых системах наиболее перспективными считаются вентильные машины.

В ряде применений, например, для приводов с вентильно-индукторными и бесколлекторными двигателями постоянного тока, вполне достаточно на интервале коммутации поддерживать в обмотке двигателя заданный фиксированный уровень тока. Структура системы управления при этом заметно упрощается. Особенность схемы (рис. 6.31) состоит в том, что ШИМ‑генератор обеспечивает сразу две функции: автокоммутацию фаз двигателя по сигналам датчика положения и поддержание тока на заданном уровне путем регулирования приложенного к обмоткам двигателя напряжения.

Первая функция может быть реализована автоматически, если генератор имеет встроенный блок управления выходами, допускающий прием команд от процессора событий. Вторая функция традиционна и реализуется путем изменения скважности выходных ШИМ-сигналов. Для оценки положения ротора двигателя можно использовать либо датчик положения на элементах Холла, либо более дорогой импульсный датчик положения. В первом случае сигналы с датчика положения вводятся в микроконтроллер на входы модулей захвата процессора событий.

Отработка двигателем каждого целого шага идентифицируется процессором событий и вызывает автокоммутацию ключей инвертора. Прерывание, возникающее при каждом захвате фронта сигнала с датчика, используется для оценки времени между двумя соседними переключениями и, далее, – скорости привода. Во втором случае можно получить более точную информацию о текущем положении ротора двигателя и о его скорости, что может потребоваться в приводах с интеллигентным управлением углом коммутации в функции скорости. Таким образом, полноценные системы векторного управления приводами переменного тока требуют для своей реализации высокопроизводительных микроконтроллеров с широким набором перечисленных выше встроенных периферийных устройств, допускающих совместную работу и требующих от центрального процессора минимальных ресурсов на свое обслуживание.

 

Рис. 6.31. Блок-схема системы управления
бесколлекторным двигателем постоянного тока

6.3. Силовые полупроводниковые
преобразователи в системе
автоматизированного электропривода

Силовые полупроводниковые преобразователи в системах автоматики выполняют функцию регулирования скорости и момента электрического двигателя. Они включены между потребителем мощности (как правило, электрическим двигателем) и основным источником питания (рис. 6.32). По принципу действия силовые преобразователи разделяются на следующие базовые типы [12]:

управляемые выпрямители (УВ), которые преобразуют переменное, обычно синусоидальное напряжение источника питания постоянной частоты (как правило, промышленной
fи= 50 Гц или fи= 400 Гц) и с постоянным действующим значением (обычно Uи = 220 В или Uи = 360 В), в регулируемое выходное напряжение постоянного тока (Uп = var, fп= 0).

широтно-импульсные преобразователи (ШИП), которые преобразуют постоянное напряжение источника питания
(Uи = const, fи= 0) в постоянное регулируемое напряжение постоянного тока на выходе (Uп = var, fп= 0).

автономные инверторы (АИ), которые преобразуют постоянное напряжение питания (Uи = const, fи = 0) в переменное напряжение на выходе с регулируемым действующим значением и регулируемой частотой (Uп = var, fп = var).

непосредственные преобразователи частоты (НПЧ) преобразуют переменное, обычно синусоидальное, напряжение постоянной частоты (fи = 400 Гц или fи = 50 Гц) постоянного действующего значения (обычно 220 В) в переменное напряжение на выходе с регулируемым действующим значением и регулируемой частотой (Uп = var, fп= var).

 

 

Рис. 6.32. Базовые способы использования силовых преобразователей

Следует заметить, что здесь постоянные напряжения (f = 0) характеризуются средними значениями Uи.ср, Uп.ср, а переменные (f ¹ 0) – действующими значениями (Uи, Uп).

Таким образом, силовые преобразователи УВ, ШИП могут использоваться для управления (напряжением, током, мощностью) потребителями постоянного тока. Причем, последние могут быть не только электрическими двигателями, но и являться потребителями с активной (резистивной) нагрузкой (такие силовые преобразователями применяются в регулируемых источниках питания). Если источником питания является сеть переменного тока, то может быть применен либо УВ, либо сочетание выпрямителя и ШИП.

Для потребителей переменного тока (которым чаще всего является машина переменного тока) применяется АИ, а при питании от источника переменного тока НПЧ, либо сочетания УВ и АИ, либо выпрямителя и АИ.


6.3.1. Управляемые выпрямители

Источником энергии для управляемых выпрямителей является сеть переменного тока. Принцип управления состоит в том, что в положительный полупериод питающего напряжения электронный ключ (как правило, тиристор) открывается и подает напряжение к потребителю лишь часть этого полупериода. Напряжение и ток на выходе управляемого выпрямителя содержат постоянные и переменные составляющие. Изменяя момент (фазу) открытия электронного ключа, меняют среднее значение напряжения на входе потребителя мощности. Управляемые выпрямители чаще всего используются для управления двигателем постоянного тока по цепи якоря.

Существует большое число различных схем управляемых выпрямителей. По принципу действия и построения они могут быть разделены на две группы: однополупериодные (схемы с нулевым проводом), в которых используют только одну полуволну напряжения сети, и двухполупериодные (мостовые схемы), где использованы обе полуволны переменного напряжения сети.

Рассмотрим работу простейшей двухполупериодной тиристорной схемы с чисто активной нагрузкой Rн (рис. 6.33).

К источнику синусоидального напряжения сети Uис амплитудой Um подключена нагрузка Rнчерез тиристорный мост
VS1VS4. Диагональные тиристоры VS1, VS4 и VS2, VS3 открываются попарно, поочередно в момент времени, определяемый углом отпирания a.

В интервал α < wt < 180° к нагрузке подводится напряжение Uп = Um sin wt.На рис. 6.35 кривая напряжения на нагрузке закрашена темным цветом.

Так как нагрузка активная (резистивная), кривая тока повторяет кривую напряжения. В момент времени wt = 180° ток уменьшается до нуля и соответствующая пара диагональных тиристоров закрывается. Этот процесс повторяется каждый полупериод. Управление тиристорами осуществляют импульсами малой длительности с достаточно крутым передним фронтом, что уменьшает потери мощности в тиристоре при включении, а следовательно, его нагрев.

Рассмотренный фазовый метод управления может быть реализован с помощью фазосдвигающих способов, одним из которых является вертикальный способ управления, основанный на сравнении опорного напряжения (обычно пилообразной формы) и постоянного напряжения сигнала управления. Равенство мгновенных значений этих напряжений определяет фазу a,при которой схема вырабатывает импульс, затем усиливаемый и подаваемый на управляющий электрод тиристора. Изменение фазы aуправляющего импульса достигается изменением уровня напряжения сигнала управления Uупр. Функциональная схема управления приведена на рис. 6.34. Опорное напряжение, вырабатываемое генератором пилообразного напряжения ГПН и синхронизированное с напряжением сети с помощью синхронизирующего устройства СУ, подается на схему сравнения СС, на которую одновременно поступает и входное напряжение (сигнал управления). Сигнал со схемы сравнения поступает на формирователь импульсов (ФИ), затем на распределитель импульсов (РИ), на усилители мощности (У), откуда в виде мощного, обладающего крутым фронтом и регулируемого по фазе импульса подается на управляющий электрод.

 

Рис. 6.33. Мостовая схема однофазного двухполупериодного УВ Рис. 6.34. Функциональная схема вертикального управляемого выпрямителя

 

Интегрируя напряжение Uп = Um sin wt наинтервале a – p,определим среднее за период значение напряжение на нагрузке:

 

, (6.17)

На рис. 6.37 штриховой линией изображена функция (6.17) в долях наибольшего среднего значения напряжения на нагрузке , соответствующего a = 0.

Процессы в выпрямителе усложняются, если нагрузка имеет активно-индуктивный характер. На рис. 6.36 показаны процессы, протекающие в подобных цепях. Отпирание тиристоров осуществляют, как и в простейшей схеме рис. 6.33. В отличие от рис. 6.35 ток нарастает не скачком, а плавно за счет индуктивности нагрузки Lн. Причем, когда напряжение питающее тиристор фазы проходит через ноль, ток не прекращается, а под действием ЭДС самоиндукции, создаваемой индуктивностью Lн, продолжает протекать еще некоторое время, преодолевая отрицательное напряжение питающей фазы. Тиристор закрывается лишь в момент времени b когда ток, протекающий через него, достигнет нуля.

В результате, как и при чисто резистивной нагрузке, на участке b – (a + 180°) происходит разрыв (прерывание) тока в цепи.

Таким образом, при наличии индуктивности в нагрузке кривая выпрямленного напряжения может иметь наряду с положительными и отрицательные участки, поэтому среднее значение напряжения на нагрузке равно

 

.

Это напряжение является функцией как угла отпирания вентилей a, так и относительной постоянной времени цепи нагрузки,определяемой как . На рис. 6.37 показаны зависимости . Для трех относительных значений t = 2, 3, ¥.

По мере уменьшения a угол b увеличивается, и интервал проводимости одной диагонали (VS1, VS4) может перекрыть момент отпирания другой диагонали (тиристоры VS2, VS3). Поэтому при отпирании тиристоров VS2, VS3 мгновенное значение тока через них окажется равным мгновенному значению тока тиристоров VS2, VS4, которые запираются. Наступает режим непрерывного тока (рис. 6.36), при котором b = a +180°.

Ток в цепи нагрузки может быть представлен в виде двух составляющих: постоянной и переменной. Переменная составляющая резко возрастает, когда ток становится прерывистым.

Так как переменная составляющая тока вызывает дополнительный нагрев и потери в нагрузке, при управлении двигателем стремятся обеспечить режим непрерывного тока, для чего последовательно с якорем включают дополнительный дроссель, увеличивая тем самым t. Следует отметить, что индуктивность дополнительного дросселя увеличивает электромагнитную, а его активное сопротивление – электромеханическую постоянные времени двигателя. Поэтому дополнительный дроссель ухудшает динамические свойства привода.

 

Рис. 6.35. Временные диаграммы напряжений на элементах УВ с чисто активной нагрузкой Рис. 6.36. Электромагнитные процессы в УВ при активно-индуктивной нагрузке

 

 

Рис. 6.37. Зависимости среднего напряжения
на выходе УВ от угла управления

Для равномерной нагрузки фаз и уменьшения пульсаций выпрямленного напряжения используют трехфазные управляемые выпрямители. Эти выпрямители подключаются к трехфазной сети переменного тока, как правило, через трехфазный трансформатор.

В трехфазном мостовом выпрямителе (рис. 6.38) последовательно соединены два трехфазных однополупериодных выпрямителя: анодный (на тиристорах VS1, VS3, VS5) и катодный (на тиристорах VS2, VS4, VS6). Каждая из этих групп повторяет работу трехфазного однополупериодного выпрямителя.

При активно-индуктивной нагрузке ток в цепи нагрузки получается идеально сглаженным и непрерывным практически во всем диапазоне регулирования (рис. 6.38).

 

Рис. 6.38. Трехфазный двухполупериодный УВ

Режим работы УВ, когда ток нагрузки протекает навстречу выпрямленному напряжению под действием ЭДС называется инверторным. На рис. 6.39 показана зависимость относительного среднего напряжения на выходе УВ при наличии в цепи нагрузки индуктивности и ЭДС. В этом случае при 90 < a < 180° УВ работает в инверторном режиме, возвращая энергию нагрузки в сеть.

В электроприводе постоянного тока обычно применяются реверсивные управляемые выпрямители (рис. 6.40), состоящие из двух УВ, соединенных встречно-параллельно нагрузке.

В этом случае один управляемый выпрямитель работает в режиме выпрямителя, а другой в режиме инвертора. Момент на валу двигателя определяется средним током на выходе УВ. Поэтому в первом приближении УВ можно считать непрерывным регулируемым источником напряжения.

Энергетические характеристики управляемого выпрямителя определяются следующими параметрами:

средним выходным напряжением на холостом ходу, отнесенным к эффективному фазовому напряжению на входе;

количеством пульсаций выходного напряжения на периоде частоты сети;

пульсацией выходного напряжения;

средним и эффективным током тиристора, отнесенным к среднему току нагрузки;

установленной мощностью трансформатора и полной потребляемой мощностью из сети, отнесенными к средней мощности в нагрузке.

Эти параметры рассчитываются в предположении, что ток нагрузки идеально сглажен.

 

Рис. 6.39. Выходное напряжение УВ Рис. 6.40. Реверсивный УВ

Управляемый выпрямитель отрицательно влияет на питающую сеть переменного тока. Во-первых, он потребляет из сети несинусоидальный ток. Во-вторых, он сдвигает фазу потребляемого тока относительно питающего напряжения. Несинусоидальность тока может быть охарактеризована коэффициентом гармоник:

,

где I1...In – эффективные значения тока первой и следующих гармоник, IS – эффективный ток всех высших гармоник.