Действия с векторами в координатах
В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:
1) Правило сложения векторов. Рассмотрим два вектора плоскости и . Для того, чтобы сложить векторы, необходимо сложить их соответствующие координаты: . Как просто. На всякий случай запишу частный случай – формулу разности векторов: . Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор и найдём сумму трёх векторов:
Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .
2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор умножить на число , необходимо каждую координату данного вектора умножить на число :
.
Для пространственного вектора правило такое же:
Приведённые факты строго доказываются в курсе аналитической геометрии.
Примечание:Данные правила справедливы не только для ортонормированных базисов , но и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.
Пример 7
Даны векторы и . Найти и
Решение чисто аналитическое:
Ответ:
Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе , то графическое решение задачи будет таким:
Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)
Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.
Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):
Пример 8
Даны векторы и . Найти и
Решение:Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:
Ответ:
И в заключение занятный пример с векторами на плоскости:
Пример 9
Даны векторы . Найти и
Это задача для самостоятельного решения.
Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:
!!! Скалярное произведение векторов
Линейная (не) зависимость векторов. Базис векторов
Векторное и смешанное произведение векторов
Это, так скажем, вектор-минимум студента =)
Любите векторы, и векторы полюбят вас!
Решения и ответы:
Задание: ,
Пример 2:Решение:
а)
б)
в)
г)
Пример 4:Решение:
По соответствующей формуле: и