Задачи для самостоятельного решения
- Ежедневно новая сделка совершается с вероятностью 0,2 (но не более одной в день). Какова вероятность, что за 5 дней будет совершено 3 сделки?
- В результате каждого визита страхового агента договор заключается с вероятностью ¼. Какова вероятность, что из 10 визитов страхового агента 5 закончатся заключением договора?
- Вероятность поражения мишени стрелком равна 0,9. Найти вероятность того, что он поразит мишень не двух раз, сделав 5 выстрелов.
- Для вычислительной лаборатории приобретено 9 компьютеров, причем вероятность брака для одного компьютера равна 0,1. Какова вероятность, что придется заменить более двух компьютеров?
- Зачетная работа по предмету состоит из 6 задач, при этом зачет считается сданным, если студент решил хотя бы 3 задачи. Студент Иванов может решить каждую задачу с вероятностью 0,6. Какова вероятность, что он сдаст зачет?
- Тест по теории вероятностей состоит из 10 вопросов. На каждый вопрос в тесте предлагается 4 варианта ответа, из которых надо выбрать один правильный. Какова вероятность того, что, совершенно не готовясь к тесту, студенту удастся угадать правильные ответы по крайней мере на 6 вопросов?
- Статистика аудиторских проверок компании утверждает, что вероятность обнаружения ошибки в каждом проверяемом документе равна 0,1. Какова вероятность, что из 10 проверенных документов большинство документов будет без ошибок?
- Два равносильных противника играют в шахматы. Что вероятнее: а) выиграть одну партию из двух или две партии из четырех; б) выиграть не менее двух партий из четырех или не менее трех партий из пяти (ничьи во внимание не принимаются)?
- Мастер и ученик играют в шахматный матч. Мастер выигрывает матч, если он выиграл все партии в матче, ученик выигрывает матч, если он выиграл хотя бы одну партию в матче. Из скольких партий должен состоять матч, чтобы шансы на победу у мастера и ученика были равны, если вероятность победы мастера в одной партии равна 0,9, а ученика – 0,1?
- Испытание состоит в подбрасывании трех кубиков. Сколько раз нужно провести испытание, чтобы с вероятностью не менее 0,95 хотя бы один раз появились «три единицы»?
- В некотором обществе 5% «левшей». Каков должен быть объем случайной выборки (с возвращением), чтобы вероятность встретить в ней хотя бы одного «левшу» была не менее 0, 95?
- В коробке 4 детали. Вероятность, что деталь стандартна, равна 0,9. Сколько надо взять коробок, чтобы с вероятностью не менее 0,99 получить хотя бы одну коробку, не содержащую брака?
- Сколько раз надо двукратно подбросить монету, чтобы с вероятностью не менее 0,95 хотя бы один раз появилось событие «один герб и одна решка»?
- Вероятность хотя бы одного попадания при двух выстрелах равна 0,96. Найти вероятность трех попаданий при четырех выстрелах.
- Проводится 12 независимых испытаний с вероятностью успеха, равной 0,4. Найти наиболее вероятнее число успехов.
- Сколько надо сделать выстрелов с вероятностью попадания в цель 0,7, чтобы наивероятнейшее число попаданий в цель было равно 15?
- Система состоит из 6 независимо работающих элементов. Вероятность отказа элемента равна 0,3. Найти а) наивероятнейшее число отказавших элементов; б) вероятность наивероятнейшего числа отказавших элементов системы; в) вероятность отказа системы, если для этого достаточно, чтобы отказали хотя бы пять элементов.
- Игральная кость бросается 16 раз. Найти наивероятнейшее число очков появлений числа очков, кратного трем и вычислить его вероятность.
- Сколько раз надо бросить игральную кость, чтобы наивероятнейшее число появлений четного числа очков, было равно 6?
- Сколько надо сыграть партий в шахматы с вероятностью победы в одной партии, равной 1/3, чтобы наивероятнейшее число побед было равно 5?
- Каждый из 100 компьютеров в интернет-кафе занят клиентом в среднем в течении 80% рабочего времени. Какова вероятность того, что в момент проверки будет занято клиентами: а) от 70 до 90 компьютеров; б) не менее 80 компьютеров?
- Известно, что вероятность «зависания» компьютера в интернет-кафе равна 0,6%. Какова вероятность того, что при случайном отборе 200 компьютеров «зависнут» а) ровно 6 компьютеров; б) не более 5 компьютеров?
- При наборе текста наборщик делает ошибку в слове с вероятностью 0,001. Какова вероятность, что в набранной книге, насчитывающей 5000 слов, будет не более 5 ошибок?
- Страховая фирма заключила 10000 договоров. Вероятность страхового случая по каждому в течении года составляет 2%. Найти вероятность того, что таких случаев будет не более 250.
- Сборник задач содержит 400 задач с ответами. В каждом ответе может быть ошибка с вероятностью 0,01. Какова вероятность, что для 99% всех задач сборника ответы даны без ошибок?
- В партии из 768 арбузов каждый арбуз оказывается неспелым с вероятностью 0,25. Найти вероятность того, что количество спелых арбузов будет находиться в пределах от 564 до 600.
- Известно, что вероятность выпуска дефектной детали равна 0,02. Детали укладываются в коробки по 100 штук. Чему равна вероятность того, что: а) в коробке нет дефектных деталей; б) число дефектных деталей не более двух?
- В партии 100 изделий, из которых 4 бракованных. Партия разделена на две равные части, которые отправлены двум потребителям. Какова вероятность того, что все бракованные изделия достанутся: а) одному потребителю; б) обоим потребителям поровну?
- Найти вероятность того, что в серии из 100 бросаний монеты число «орлов» и «решек» совпадают.
- В коробке 3 детали, вероятность брака для каждой детали равна 0,1. Какова вероятность того, что среди 10 коробок будет не менее 8 не содержащих бракованных деталей?
- Производители калькуляторов знают из опыта, что 1% проданных калькуляторов имеет дефекты. Аудиторская фирма купила 500 калькуляторов. Какова вероятность того, что придется заменить 4 калькулятора?
- Вероятность того, что в партии из 100 изделий имеется брак, составляет 63,2%. Найти вероятность, что там не более 3 бракованных изделии.
- На научную конференцию приглашены 100 человек, причем каждый из них прибывает с вероятностью 0,7. В гостинице для гостей заказано 65 мест. Какова вероятность, что все приезжающие будут поселены в гостинице?
- Вероятность того, что дилер продаст ценную бумагу, равна 0,6. Сколько должно быть ценных бумаг, чтобы с вероятностью 0,99 можно было надеяться, что доля проданных бумаг отклоняется от 0,6 не более, чем на 0,05?
- На выборах кандидата в мэры поддерживает 40% населения. При опросе общественного мнения было выбрано 1000 человек. С какой вероятностью можно утверждать, что доля избирателей из этой выборки, поддерживающих кандидата, отличается от истинной доли не более, чем на 0,05?
- Каждый из 900 посетителей оптового рынка случайным образом обращается в один из 10 ларьков. В каких границах с вероятностью 0,95 лежит число клиентов отдельно взятого ларька?
- Производится 500 подбрасываний симметричной монеты. В каких пределах будет находиться отклонение частоты выпадения герба от 0,5 с вероятностью 0,99?
- Доля населения региона, занятого в промышленности, равна 0,4. В каких пределах с вероятностью 0,95 находится число занятых в промышленности среди 10000 случайно отобранных людей?
- По экспертной оценке доля p населения данной социальной группы приближенно равна 0,25. Каков должен быть объем n выборки, чтобы с вероятностью не менее 0,99 погрешность в оценке неизвестной вероятности p составляла не более 0,005?
- Вероятность того, что случайно взятая деталь окажется второго сорта, равна 3/8. Сколько нужно взять деталей, чтобы с вероятностью, равной 0,995
- Вероятность того, что случайно взятая деталь окажется второго сорта, равна 3/8. Сколько нужно взять деталей, чтобы с вероятностью, равной 0,995, можно было ожидать, что доля деталей второго сорта отклонится от вероятности менее, чем на 0,001?
- Шесть рукописей случайно раскладывают по пяти папкам. Какова вероятность, что ровно одна папка останется пустой?
- Пять яблок раскладываются в четыре ящика. Какова вероятность, что в двух ящиках будет по два яблока, в одном - одно яблоко и один ящик будет пустой?
- Пять клиентов случайным образом обращаются в 5 фирм. Найти вероятность того, что в одну фирму никто не обратится.
- Два шахматиста — А и В — встречались за доской 50 раз, причем 15 раз выиграл А, 10 раз выиграл В и 25 партий закончились вничью. Найти вероятность того, что в матче из 10 партий между этими шахматистами 3 партии выиграет А, 2 партии выиграет В, а 5 партий закончатся вничью.
- В магазине висит один костюм второго роста, два костюма третьего роста, три костюма четвертого роста. Костюм второго роста спрашивается с вероятностью 0,2, костюм третьего роста - с вероятностью 0,3, костюм четвертого роста - с вероятностью 0,5. В магазин обратились три покупателя. Найти вероятность того, что хотя бы один из них ушел без покупки.
- Лифт начинает движение с 7 пассажирами и останавливается на 10 этажах. Найти вероятность того, что три пассажира вышли на одном этаже, еще два пассажира вышли на другом этаже и последние два – на еще одном этаже.
- В некоторой лотерее каждый сотый билет выигрышный. Сколько нужно купить билетов, чтобы с вероятностью 0,95 быть уверенным в том, что хотя бы один билет окажется выигрышным?
return false">ссылка скрыта