Выбор изоляции паза и лобовых частей

Целью этой изоляции является обеспечение требуемой электрической прочности между обмотками разных фаз, а также обмотками и магнитопроводом (корпусом) асинхронного двигателя. Кроме того, она должна отвечать требованиям нагревостойкости, химической стойкости, влагостойкости и пр.

 
 

Рис. 6. Пазовая изоляция обмотки

Изоляция паза (рисунок 6) состоит из пазовой коробки 1, межслойной прокладки 2 (если обмотка двухслойная), прокладки под клин 3 и пазового клина 4. Также устанавливаются межфазовые прокладки в лобовых частях

секций или катушечных групп, изоляции внутри машинных соединений, а также под бандаж в пазовых и лобовых частях обмоток.

При ремонте АД серий А, А0, А2, А02 с нагревостойкостью изоляции:

А и Е (которых пока в РБ большинство) наибольшее применение получили, пазовые коробки из 3-х слоёв диалектиков:

¾ первый слой (кладётся в паз на магнитопровод), его назначение – защита второго слоя от повреждения листами стали, от этих материалов, в первую очередь требуется высокая механическая прочность (электрокартон, слюдинит и пр.).

¾ второй слой это основная электрическая изоляция, от неё требуется высокая электрическая прочность (лакоткани, гибкие плёнки и т.п.).

¾ третий слой делается из механически прочного диэлектрика, он так же как и первый защищает второй слой от повреждений, но уже активными проводниками, которые помещаются в паз (электрокартон, кабельная бумага и т. п.).

Пазовый короб должен плотно прилегать к стенкам паза, не сминаться при укладке обмотки, быть стойким к надрыву, продавливанию, расслоению и достаточно скользким.

Изоляция под бандаж выполняется также в три слоя, а междуфазные прокладки в лобовых частях обмотки могут иметь один, два или три слоя, в зависимости от используемых материалов.

Электроизоляционные материалы для всех указанных деталей обмоток выбираются в зависимости от номинального напряжения машины, класса нагревостойкости, условий работы, наличия диэлектрических материалов и по экономическим соображениям.

Широкое применение в современных электрических машинах напряжением до 1000 В получили синтетические плёнки и материалы, изготовленные с их применением – композиционные материалы. Они позволяют значительно сократить толщину изоляции вследствие их высокой электрической, а нередко и механической прочности, что повышает коэффициент заполнения паза. Полиэтилентерефталатная (лавсановая) плёнка ПЭТФ и пленкоэлектрокартон применяются в первую очередь для изготовления пазовых коробок и прокладок. При этом две полоски плёнкоэлектрокартона складываются плёнкой внутрь.

Полиамидная плёнка ПМ применяется в электрических машинах с нагревостойкостью изоляции до 2200С.

Фторопластовая плёнка Ф-4ЭО, Ф-4ЭН имеет высокую влагостойкость, стойкость к растворителям, воздействию химически активных сред и применяться в машинах специального назначения (например, для работы во фреоновых компрессорах) и в тех случаях, когда нагревостойкость изоляции должна быть выше 2200С. однако фторопластовые плёнки мягки и поэтому для пазовой изоляции их применяют в сочетании с другими, более жёсткими материалами.

Композиционные материалы обладают достаточно высокими механическими свойствами, они поставляются в рулонах.

Плёнкосинтокартоны марок ПЭТ-Ф, ПСК-ЛП состоят из плёнки ПЭТФ, оклеенной с обеих сторон либо бумагой из фенилового волокна (ПСК-Д), либо бумагой из лавсанового волокна без пропитки (ПСК-Л) или с пропиткой (ПСК-ЛП).

Плёнкослюдопласт ГИП-ЛСП-ПЛ представляет собой слой флогопитовогослюдопласта, оклеенного с одной стороны стеклотканью, а с другой – плёнкой ПЭТФ, широко используется для изоляции обмоток из жёстких секций.

Для прокладок в лобовых частях применяются материалы, поверхность которых имеет повышенный коэффициент трения, в частности кабельную бумагу, тонкий электрокартон, плёнколакослюдопласт, плёнкоасбестокартон (их используют в двигателях серий А, А2, А4).

Изолирование внутримашинных соединений и выходных концов осуществляется изоляционными трубками. В местах, где они не подвергаются изгибам, кручению и сжатию (при увязке схемы), применяют лакированные трубки марок: ТЛВ и ТЛС (на основе стеклянного чулка и масляного лака) – у машин с классом нагревостойкости изоляции А для работы в нормальных условиях окружающей среды; ТЭС – для машин с классом нагревостойкости В всех исполнений; ТКС – для машин с классом нагревостойкости F и Н химически стойкого исполнения.

Трубки на основе фтороорганической резины марки ТРФ наиболее эластичны и стойки к перегибам.

Для механической защиты и закрепления изоляции применяют х/б, стеклянные и лавсановые ленты. Х/б ленты используются только в машинах с классом нагревостойкости изоляции А и только в пропитанном виде.

Стеклянные ленты пригодны для машин классов нагревостойкости изоляции Е, В, F и Н всех исполнений. Для уменьшения выделений из стеклянной ленты пыли, при изолировании их пропитывают лаками.

Лавсановые ленты разработаны в последние годы и внедряются в производство. Они могут заменить не только стеклоленты, но и шнуры. Их можно использовать для обмоток классом нагревостойкости изоляции Н.

Лавсановые ленты не требуют пропитки. Толщина лавсановых лент: миткалевой – 0,14 мм, батистовой – 0,15 мм. Наиболее часто применяются для обмоток тафтяная лавсановая лента, она выпускается шириной 20, 28, 30 мм. При ширине 20 мм разрывная нагрузка такой ленты составляет 390 Н. Большим преимуществом лавсановых лент является их усадка после термообработки, в результате чего происходит дополнительная натяжка изоляции.

Для увязки и бандажировки обмоток статора в лобовых частях применяют хлопчатобумажные шнур-чулки при классе нагревостойкости изоляции А и стеклянные шнур-чулки при классах нагревостойкости B, F, Н.

Учитывая номинальное напряжение, класс нагревостойкости, условия работы АД, наличие диэлектрических материалов и экономические соображения, выбираем синтетическую триацетат целлюлозную плёнку толщиной 35 мкм. Применяем, также композиционные материалы на основе синтетических плёнок (выбираем плёнкосинтокартон ПСК-ЛП, толщиной 0,30 мм). Внутреннее соединение и выходные концы будем изолировать электроизоляционными трубками ТЭС, внутренним диаметром 2,5 мм. Для механической защиты и закрепления изоляции применяем х/б лавсановые и стеклянные ленты ЛЭС, толщиной 0,08 мм. Для увязки и бандажирования применим хлопчатобумажные шнур-чулки АСЭЧ(б)-1,0.

Материалы, выбранные для изоляции пазов и лобовых частей обмотки :

1–й слой – электрокартон ЭВС, толщиной 0,3 мм, кВ/мм,

2-й слой – лакоткань ЛХМ-105, толщиной 0,17 мм, кВ (пробивное напряжение дано для данной толщины диэлектрика),

3-й слой – электрокартон ЭВС, толщиной 0,2 мм, кВ/мм.

Проверяем выбранные диэлектрики на электрическую прочность изоляции паза:

Электрическая прочность 1-го слоя: кВ;

Электрическая прочность 2-го слоя: кВ;

Электрическая прочность 3-го слоя: кВ.

Суммарная электрическая прочность пазовой изоляционной коробки :

кВ.

Проверка электрической прочности гильзы:

 

,

 

т.к. 12>1,0+2 0,38 кВ,

то изоляция удовлетворяет поставленным условиям, более того, диэлектрики можно взять меньшей толщины. Однако, учитывая необходимость обеспечения нужной механической прочности изоляции, выбранные материалы можно утвердить.