НЕЗАКОННАЯ РЕКОМБИНАЦИЯ
Незаконная рекомбинация - это сборная группа процессов, где рекомбинация происходит без гомологии между молекулами ДНК, и при этом без участия механизмов сайт-специфической рекомбинации или транспозиций. В качестве примеров можно привести захват ретровирусом некоторых клеточных генов при его эксцизии из хромосомы хозяйской клетки, а также интеграцию фрагментов ДНК, вводимых в клетки позвоночных с помощью микроинъекций. Механизмы незаконной рекомбинации малоизучены. Общим для них является соединение концов негомологичных молекул ДНК.
Впервые механизм одной из реакций незаконной рекомбинации был описан японским исследователем Х. Икедой с сотрудниками в 1982 году. В опыте in vitro эти авторы продемонстрировали рекомбинацию между полностью негомологичными ДНК плазмиды pBR322 и фага лямбда, катализируемую высокоочищенной топоизомеразой II (ДНК-гиразой) E. coli. Согласно модели, предложенной авторами, две молекулы гиразы, каждая из которых состоит из двух пар субъединиц, временно разрывают в обеих молекулах обе цепи ДНК, удерживая их концы. Затем они обмениваются парами субъединиц вместе с удерживаемыми концами разных ДНК-партнеров и сшивают концы дуплексов. Позднее Икеда показал такую рекомбинацию и in vivo в клетках E. coli. К настоящему времени накоплены данные об участии топоизомераз обоих типов в незаконной рекомбинации у бактерий и эукариот.
В последнее десятилетие у амфибий и млекопитающих обнаружены ферменты, связывающие двуцепочечные концы ДНК независимо от их гомологии. Природа этих белков до последнего времени оставалась неясной. Сенсационный прорыв в данной области возник в 1994-1995 годах в результате исследования мутантов грызунов, проявляющих повышенную по сравнению с нормальными особями чувствительность к ионизирующим излучениям. Известно, что ионизирующие излучения вызывают двуцепочечные разрывы ДНК, то есть разрывы хромосом, для залечивания которых в нормальной клетке существуют специальные системы репарации. У мутантов они нарушены. Кроме того, у мутантов оказалась подавленной и интеграция в хромосомы фрагментов ДНК, искусственно введенных в клетки. Это неудивительно, поскольку у млекопитающих в основе процессов как интеграции чужеродной ДНК, так и репарации двуцепочечных разрывов лежит соединение концов разорванных двуцепочечных ДНК, обходящееся без гомологии, то есть оба процесса осуществляются по механизму незаконной рекомбинации (в отличие от дрожжей и бактерий, у которых они основаны на гомологичной рекомбинации). Неожиданным оказался тот факт, что мутанты проявили неспособность к рекомбинационным перестройкам в кодирующих иммуноглобулины последовательностях ДНК, а это означает, что незаконная рекомбинация играет важную роль и в этих перестройках. Таким образом, было выяснено, что в рекомбинации иммуноглобулиновых последовательностей ДНК задействованы два разных механизма. Ранние этапы - образование сайт-специфических двуцепочечных разрывов происходят по типу сайт-специфической, а поздние - воссоединение концов разрывов - по механизму незаконной рекомбинации. Выявлен и фермент, ответственный за такую незаконную рекомбинацию: указанные выше радиочувствительные мутанты оказались дефектными по ДНК-зависимой протеинкиназе. Фермент активируется, связываясь со свободными концами ДНК независимо от их происхождения, и соединяет эти концы.
Нетрудно заметить, что незаконная рекомбинация, подобно сайт-специфической рекомбинации и транспозициям, может приводить к хромосомным перестройкам. В живой клетке разрывы хромосом, являющиеся одним из источников незаконной рекомбинации, могут спонтанно возникать в ходе репликации, транскрипции и репарации ДНК. Однако нельзя исключить возможность того, что произвольное комбинирование разорванных концов эукариотической хромосомы может ограничиваться структурной организацией хроматина, фиксирующей эти концы.