Классическое естествознание и его методология

Хронологически этот период, а значит, становление естествознания как определенной системы знания, начинается примерно в XVI—XVII вв. и завершается на рубеже XIX—XX вв. В свою очередь данный период можно разделить на два этапа: этап механистического естествознания (до 30х гг. XIX в.) и этап зарождения и формирования эволюционных идей (до конца XIX — начала XX в.).

I. Этап механистического естествознания. Начало этого этапа совпадает со временем перехода от феодализма к капитализму в Западной Европе. Начавшееся бурное развитие производительных сил (промышленности, горного и военного дела, транспорта и т. п.) потребовало решения целого ряда технических задач. А это в свою очередь вызвало интенсивное формирование и развитие частных наук, среди которых особую значимость приобрела механика.

Активное деятельностное отношение к миру требовало познания его существенных связей причин и закономерностей. Одной из ключевых проблем стала проблема метода. Механистическое естествознание начинает развиваться ускоренными темпами.

В свою очередь этап механистического естествознания можно условно подразделить на две ступени — доньютоновскую и ньютоновскую, — связанные соответственно с двумя глобальными на­учными революциями, происходившими в XVI—XVII вв. и создавшими принципиально новое (по сравнению с античностью и средневековьем) понимание мира.

Доньютоновская ступень — и соответственно первая научная революция происходила в период Возрождения, и ее содержание определило гелиоцентрическое учение Я. Коперника (1473—1543). Это был конец геоцентрической системы, которую Коперник отверг на основе большого числа астрономических наблюдений и расчетов, — это и было первой научной революцией, подрывавшей также и религиозную картину мира. Он высказал мысль о движении как естественном свойстве материальных объектов, подчиняющихся определенным законам, и указал на ограни­ченность чувственного познания («Солнце ходит вокруг Земли»). Но Коперник был убежден в конечности мироздания: Вселенная где-то заканчивается твердой сферой, на которой закреплены неподвижные звезды. Нелепость такого взгляда показал датский астроном Тихо Браге, а особенно Д. Бруно.

Вторую глобальную научную революцию XVII в. чаще всего связывают с именами Галилея, Кеплера и Ньютона, который ее и завершил, открыв тем самым новую — посленьютоновскую сту­пень развития механистического естествознания. В учении Г. Галилея (1564—1642) уже были заложены достаточно прочные основы нового механистического естествознания. В центре его на­учных интересов стояла проблема движения. Открытие принципа инерции, исследование им свободного падения тел имели большое значение для становления механики как науки.

Исходным пунктом познания, по Галилею, является чувственный опыт, который, однако, сам по себе не дает достоверного знания. Оно достигается планомерным и реальным или мысленным экспериментированием, опирающимся на строгое количественно-математическое описание.

Галилей выделял два основных метода экспериментального исследования природы:

1. Аналитический («метод резолюций») — прогнозирование чувственного опыта с использованием средств математики, абстракций и идеализации. С помощью этих средств выделяются элементы реальности (явления, которые «трудно себе предоставить»), недоступные непосредственному восприятию (например, мгновенная скорость). Иначе говоря, вычленяются предельные феномены познания, логически возможные, но не представимые в реальной действительности.

2. Синтетически-дедуктивный («метод композиций») — на базе количественных соотношений вырабатываются некоторые теоретические схемы, которые применяются при интерпретации явлений, их объяснении.

Достоверное знание в итоге реализуется в объясняющей теоретической схеме как единство синтетического и аналитического, чувственного и рационального. Способ мышления Галилея исходил из того, что одни чувства без помощи разума не способны дать нам истинного понимания природы, для достижения которого нужно чувство, сопровождаемое рассуждением.

Иоган Кеплер (1571—1630) установил три закона движения планет относительно Солнца. Кроме того, он предложил теорию солнечных и лунных затмений и способы их предсказания, уточ­нил расстояние между Землей и Солнцем и др. Но Кеплер не объяснил причины движения планет, ибо динамика — учение о силах и их взаимодействии — была создана позже Ньютоном.

Вторая научная революция завершилась творчеством Ньютона (1643—1727). Главный труд Ньютона — «Математические начала натуральной философии» (1687) — «библия новой науки». В этой и других своих работах Ньютон сформулировал понятия и законы классической механики, дал математическую формулировку закона всемирного тяготения, теоретически обосновал законы Кеплера (создав тем самым небесную механику), и с единой точки зрения объяснил большой объем опытных данных (неравенства движения Земли, луны и планет, морские приливы и др.).

Содержание научного метода Ньютона (метода принципов) сводится к следующим основным «ходам мыслей»:

1) провести опыты, наблюдения, эксперименты;

2) посредством индукции вычленить в чистом виде отдельные стороны естественного процесса и сделать их объективно наблюдаемыми;

3) понять управляющие этими процессами фундаментальные закономерности, принципы, основные понятия;

4) осуществить математическое выражение этих принципов, т. е. математически сформулировать взаимосвязи естественных процессов;

5) построить целостную теоретическую систему путем дедуктивного развертывания фундаментальных принципов, т. е. «прийти к законам, имеющим неограниченную силу во всем космосе» (В. Гейзенберг);

6) «использовать силы природы и подчинить их нашим идеям в технике» (В.Гейзенберг). |^Н

Сам Ньютон с помощью своего метода решил три кардинальные задачи. Во-первых, четко отделил науку от умозрительной натурфилософии (точная наука о природе) и дал критику последней. В вторых, разработал классическую механику как целостную систему знаний о механическом движении тел. Его механика стала эталоном научной теории вообще. В-третьих, Ньютон завершил построение новой революционной для того времени картины природы, сформулировав основные идеи, понятия, принципы, составившие механическую картину мира.

Основное содержание механической картины мира, созданной Ньютоном, сводится к следующим моментам.

1. Весь мир, вся Вселенная (от атомов до человека), понимался как совокупность огромного числа неделимых и неизменных частиц, перемещающихся в абсолютном пространстве и времени, взаимосвязанных силами тяготения, мгновенно передающимися от тела к телу через пустоту (ньютоновский принцип дальнодействия).

2. Согласно этому принципу любые события жестко предопределены законами классической механики.

3. В механической картине мира последний был представлен состоящим из вещества, где элементарным объектом выступал атом», а все тела — как построенные из абсолютно твердых, однородных, неизменных и неделимых корпускул — атомов. Главными понятиями при описании механических процессов были понятия «тело» и «корпускула».

4. Движение атомов и тел представлялось как их перемещение в абсолютном пространстве с течением абсолютного времени. Эта концепция пространства и времени как арены для движущихся тел, свойства которых неизменны и независимы от самих тел, составляла основу механической картины мира.

5. Природа понималась как простая машина, части которой подчинялись жесткой детерминации, которая была характерной особенностью этой картины.

6. Важная особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы — синтез естественнонаучного знания на основе редукции (сведения) разного рода процессов и явлений к механическим.

Механическая картина мира сыграла в целом положительную роль в развитии науки и философии. Она давала естественнонаучное понимание многих явлений природы, освободив их от мифологических и религиозных схоластических толкований. Она ориентировала на понимание природы из нее самой, на познание есте­ственных причин и законов природных явлений.

II. Этап зарождения и формирования эволюционных идей — с начала 30-х гг. XIX в. до конца XIX — начала XX в. Уже с конца XVIII в. в естественных науках (в том числе и в физике, которая выдвинулась на первый план) накапливались факты, эмпиричес­кий материал, которые не «вмещались» в механическую картину мира и не объяснялись ею. «Подрыв» этой картины мира шел глав­ным образом с двух сторон: во-первых, со стороны самой физики и, во-вторых, со стороны геологии и биологии.

Первая линия «подрыва» была связана с активизацией исследований в области электрического и магнитного полей. Особенно большой вклад в эти исследования внесли английские ученые М. Фарадей (1791—1867) и Д. Максвелл (1831—1879). Благодаря их усилиям стали формироваться не только корпускулярные, но и континуальные («сплошная среда») представления.

Фарадей обнаружил взаимосвязь между электричеством и магнетизмом, ввел понятия электрического и магнитного полей, вы­винул идею о существовании электромагнитного поля. Максвелл создал электродинамику и статистическую физику, построил теорию электромагнитного поля, предсказал существование электромагнитных Волн, выдвинул идею об электромагнитной прир­де света. Тем самым материя предстала не только как вещество (как в механической картине мира), но и как электромагнитное поле.

Успехи электродинамики привели к созданию электромагнитной картины мира, которая объясняла более широкий круг явленийи более глубоко выражала единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов (законы Ампера, Ома, Био—Савара—Лапласа и др.).

С тех пор механистические представления о мире были существенно поколеблены и будучи не в силах объяснить новые явления — механическая картина мира начала сходить с исторической сцены, уступая место новому пониманию физической реальности.

Что касается второго направления «подрыва» механической картины мира, то его начало связано с именами английского геолога Ч. Лайеля (1797—1875) и французскими биологами Ж Б. Ла-марком (1744—1829) и Ж Кювье(1769-1832).

Ч. Лайель в своем главном труде «Основы геологии» в трех томах (1830—1833) разработал учение о медленном и непрерывном изменении земной поверхности под влиянием постоянных геологических факторов. Принципы высшей формы он перенес (редуцировал) на познание низших форм. Ч. Лайель — один из основоположников актуалистического метода в естествознании, суть которого в том, что на основе знания о настоящем делаются выводы о прошлом (т. е. настоящее — ключ к прошлому).

Ж. Б. Ламарк создал первую целостную концепцию эволюции живой природы. По его мнению, виды животных и растений постоянно изменяются, усложняясь в своей организации в результате влияния внешней среды и некоего внутреннего стремления всех организмов к усовершенствованию. Провозгласив принцип эволюции всеобщим законом развития живой природы, Ламарк, однако, не вскрыл истинных причин эволюционного развития.

Ж. Кювье не признавал изменяемости видов, объясняя смену ископаемых фаун так называемой «теорией катастроф», которая исключала идею эволюции органического мира. Кювье утверждал, что каждый период в истории Земли завершается мировой катастрофой — поднятием и опусканием материков, наводнениями, разрывами слоев и др. В результате этих катастроф гибли животные и растения, и в новых условиях появились новые их виды, не похожие на предыдущие. Причину катастроф он не указывал, не объяснял.

Итак, уже в первые десятилетия XIX в. было фактически подготовлено «свержение» метафизического в целом способа мышления, господствовавшего в естествознании. Особенно этому способствовали три великих открытия: создание клеточной теории, открытие закона сохранения и превращения энергии и разработка Дарвиным эволюционной теории.

Теория клетки была создана немецкими учеными М. Шлейденом и Т. Шванном в 1838—1839 гг. Клеточная теория доказала внутреннее единство всего живого и указала на единство происхождения и развития всех живых существ. Она утвердила общность происхождения, а также единство строения и развития растений и животных.

Открытие в 40-х гг. XIX в. закона сохранения и превращения энергии (Ю. Майер, Д. Джоуль, Э. Ленд) показало, что признававшиеся ранее изолированными так называемые «силы» — теплота, свет, электричество, магнетизм и т. п. — взаимосвязаны, переходят при определенных условиях одна в другую и представляют собой лишь различные формы одного и того же движения в природе. Энергия как общая количественная мера различных форм движения материи не возникает из ничего и не исчезнет, а может только переходить из одной формы в другую.

Теория Ч. Дарвина окончательно была оформлена в его главном труде «Происхождение видов путем естественного отбора (1859). Эта теория показала, что растительные и животные организмы (включая человека) — не богом созданы, а являются результатом длительного естественного развития (эволюции) органического мира, ведут свое начало от немногих простейших существ, которые в свою очередь произошли от неживой природы. Тем самым были найдены материальные факторы и причины эволюции — наследственность и изменчивость — и движущие факторы эволюции — естественный отбор для организмов, живущих в «дикой» природе, и искусственный отбор для разводимых человеком домашних животных и культурных растений. Впоследствии теорию Дарвина подтвердила генетика.