Изучить принцип работы 3D принтера.

3D-модели создаются методом ручного компьютерного графического дизайна или за счет 3D-сканирования. Ручное моделирование, или подготовка геометрических данных для создания трехмерной компьютерной графики, несколько напоминает скульптуру. 3D-сканирование – это автоматический сбор и анализ данных реального объекта, а именно формы, цвета и других характеристик, с последующим преобразованием в цифровую трехмерную модель.

И ручное и автоматическое создание 3D-печатных моделей может вызвать трудности у среднего пользователя. В связи с этим в последние годы получили распространение 3D-печатные торговые площадки. Среди наиболее популярных примеров такие сервисы, как Shapeways, Thingiverse и Threeding.

Во время печати принтер считывает 3D-печатный файл (как правило, в формате STL), содержащий данные трехмерной модели, и наносит последовательные слои жидкого, порошкообразного, бумажного или листового материала, выстраивая трехмерную модель из серии поперечных сечений. Эти слои, соответствующие виртуальным поперечным сечениям в CAD-модели, соединяются или сплавляются вместе для создания объекта заданной формы. Основным преимуществом данного метода является возможность создания геометрических форм практически неограниченной сложности.

«Разрешение» принтера подразумевает толщину наносимых слоев (ось Z) и точность позиционирования печатной головки в горизонтальной плоскости (по осям X и Y). Разрешение измеряется в DPI (количество точек на дюйм) или микрометрах (устаревшим термином является «микрон»). Типичная толщина слоя составляет 100мкм (250 DPI), хотя некоторые устройства вроде Objet Connex и 3D Systems ProJet способны печатать слоями толщиной от 16мкм (1 600 DPI). Разрешение по осям X и Y схоже с показателями обычных двухмерных лазерных принтеров. Типичный размер частиц составляет около 50-100мкм (от 510 до 250 DPI) в диаметре.

Построение модели с использованием современных технологий занимает от нескольких часов до нескольких дней в зависимости от используемого метода, а также размера и сложности модели. Промышленные аддитивные системы могут, как правило, сократить время до нескольких часов, но все зависит от типа установки, а также размера и количества одновременно изготавливаемых моделей.

Традиционные производственные методы вроде литья под давлением могут обходиться дешевле при производстве крупных партий полимерных изделий, но аддитивные технологии обладают преимуществами при мелкосерийном производстве, позволяя достигнуть более высокого темпа производства и гибкости дизайна, наряду с повышенной экономичностью в пересчете на единицу произведенного товара. Кроме того, настольные 3D-принтеры позволяют дизайнерам и разработчикам создавать концептуальные модели и прототипы, не выходя из офиса.

Хотя разрешение принтеров вполне достаточно для большинства проектов, печать объектов со слегка превышенными измерениями и последующей субтрактивной механической обработкой высокоточными инструментами позволяет создавать модели повышенной точности. Примерами устройств с подобным комбинированным методом изготовления и обработки служит LUMEX Avance-25.

Некоторые методы аддитивного производства предусматривают возможность использования нескольких материалов, а также разных цветов в течение одного производственного цикла. Многие из 3D-принтеров используют «поддержки» или «опоры» во время печати. Опоры необходимы для построения фрагментов модели, не соприкасающихся с нижележащими слоями или рабочей платформой. Сами опоры не являются частью заданной модели, и по завершении печати либо отламываются (в случае использования того же материала, что и для печати самой модели), либо растворяются (как правило, в воде или ацетоне – в зависимости от материала, используемого для создания опор).

Схема работы 3D-принтеров типа FDM