Логарифмическая амплитудно-частотная характеристика

Длительность переходного процесса tп = 3T; q(tп) = 0,95q.

Полоса пропускания

При уменьшении постоянной времени Т увеличивается ωп, и при Т = 0 переходная характеристика будет повторять входной процесс, и в результате получим звено, описываемое уравнением

;

такое звено называется безынерционным ;

Передаточная функция, АЧХ и ФЧХ звена соответственно равны:

W(s) = k; A(ω) = k;Ψ(ω) = 0.

К безынерционным звеньям обычно относят звенья, ширина спектра сигналов, на входах которых значительно уже полосы пропускания.

Рассмотрим пример RC – цепи (рис.4)

Такая цепь относится к апериодическому звену и имеет передаточную функцию

где T =R1R2C/R1+R2.

Рис.4. Пример апериодического звена

При и апериодическое звено трансформируется в безынерционное звено.

Интегрирующее (идеальное) звено.

Уравнение и передаточная функция звена:

В случае интегрирующего звена параметр k является коэффициентом передачи звена по скорости, численно равным скорости изменения выходной величины при единичном значении входной величины.

Частотные и временные функции звена:

 

Построенные по указанным функциям характеристики звена представлены на рис.2.12.

При построении ЛАЧХ удобно отложить точку с координатами ,

(при этом ); и провести прямую с наклоном минус 20 дБ/дек, так как с увеличением частоты на одну декаду ордината ЛАЧХ уменьшается на 20 дБ. (При каком-то значении получаем при увеличении частоты на одну декаду, т.е. при , соответственно

Разность этих ординат составляет минус 20 дБ).

Дифференцирующее (идеальное) звено.

Уравнение и передаточная функции звена:

W(p)=kp.

Выходная величина пропорциональна скорости изменения входной величины.

Если входная и выходная величины имеют одинаковую размерность, то коэффициент k измеряется в секундах. В этом случае его принято обозначать через Т и называть постоянной времени дифференцирующего звена.

Выражение для основных функций:

Как передаточная функция, так соответственно и частотные характеристики дифференцирующего звена обратны передаточной функции и соответствующим характеристикам интегрирующего звена.

О том, что звено с представленным математическим описанием является идеальным, говорит, к примеру, переходная функция. Ни в каком реальном устройстве невозможно получить скачек выходной величины бесконечной амплитуды.

Реальные дифференцирующие звенья обладают конечной инерционностью, вследствии чего осуществляемое ими дифференцирование не является точным. Примером может служить тахогенератор, если за его входную величину принять угол поворота его вала, а за выходную величину - выходное напряжение. Последнее пропорционально угловой скорости вращения вала, которая в свою очередь равна производной от угла поворота.

2.7. Частотные характеристики разомкнутых систем

Метод построения асимптотических ЛАХ рассмотрим на примере.

Пусть передаточная функция разомкнутой системы определяется выражением

.

Заменой переменной перейдем к частотной передаточной функции

,

где Т1, Т2, Т3 – постоянные времени соответствующих звеньев; К – коэффи циент усиления или добротность (имеет размерность частоты).

Модуль частотной передаточной функции А(ω) последовательно включенных звеньев определяется как произведение модулей этих звеньев. а аргумент – как сумма фазовых сдвигов звеньев.

;

Обычно полагают, что . Пусть Т1 > Т2, > Т3.

Обозначим – сопрягающая частота; . Тогда

;

При построении асимптотических ЛАХ используется следующее правило:

Если , то пренебрегают вторым слагаемым, т.е. .

Если , то пренебрегают единицей,

При этом в точке сопряжения ошибка не превышает нескольких дБ.

Асимптотическая ЛАХ для n последовательно включенных звеньев состоит из n+1 асимптоты, каждая из которых строится в диапазоне частот:

1ая: ;

2ая: ;

… … … … …

n+1: .

Построим L(ω) (рис. 1).

Уравнение для первой асимптоты ( ):

,

при ω = K, L(ω) = 0.

Наклон асимптоты будет равен –20 дБ на декаду.

Вторая асимптота строится в диапазоне частот ( )

в соответствии с уравнением:

Рис. 1. Логарифмическая амплитудно-частотная характеристика

.

Наклон асимптоты будет равен –40 дБ на декаду.

Третья асимптота строится в диапазоне частот ( ). Уравнение третьей асимптоты:

Это уравнение прямой, проходящей через точки L (ω2) и L (ω3),

где .

Таким образом, можно записать:

В точке L2 асимптота изменяет свой наклон на +20 дБ, итоговый наклон третьей асимптоты составляет –20 дБ.

Четвертая асимптота строится в диапазоне частот ( ) в соответствии с уравнением:

Таким образом, при переходе через сопрягающую частоту ω3 асимптота меняет свой наклон на –20 дБ, и в итоге имеет наклон –40 дБ/дек.

Выводы:

1.При переходе текущего значения частоты через очередную сопрягающую частоту наклон асимптоты изменяется на +20 дБ, если множитель находится в числителе выражения для расчета АЧХ и изменяется на –20 дБ, если этот множитель находиться в знаменателе.

2. Наклон каждой асимптоты кратен 20 дБ /дек.

По ЛАЧХ можно восстановить частотную передаточную функцию.

Приложение 1

Примеры расчета передаточной функции электрических звеньев по параметрам электрической схемы.

Пример 1

Вывести передаточную функцию схемы на рис.1, считая входной величиной напряжение u1, а выходной - u2.

Рис.1

При выводе передаточной функции будем считать, что цепочка не нагружена (никаких элементов к выходным зажимам не подключено, либо эти элементы имеют сопротивление, стремящееся к бесконечности) и сопротивление источника входного напряжения настолько велико, что его можно считать равным бесконечности.

Подставим (в) в (а):

Перейдем к изображениям:

Передаточная функция

где T=RC- постоянная времени.

Пример 2

Вывести передаточную функцию схемы на рис.1, считая входной величиной u1, выходной u2, при допущениях, , что цепочка не нагружена (никаких элементов к выходным зажимам не подключено, либо эти элементы имеют сопротивление, стремящееся к бесконечности) и сопротивление источника входного напряжения настолько велико, что его можно считать равным бесконечности.

Рис.1

Составляем два уравнения по второму закону Кирхгофа, одно уравнение по первому закону Кирхгофа и расписываем выходную величину:

Из уравнений (б) и (в) соответственно получим:

Подставим полученные выражения i1(t) и i2(t) в уравнения (а) и (г):

Перейдем к изображениям:

Передаточная функция:

где -коэффициент передачи,

, - постоянные времени.

Пример 3.

Вывести передаточную функцию схемы на рис.1, считая входной величиной u1, выходной - u2, при допущениях, , что цепочка не нагружена (никаких элементов к выходным зажимам не подключено, либо эти элементы имеют сопротивление, стремящееся к бесконечности) и сопротивление источника входного напряжения настолько велико, что его можно считать равным бесконечности.

Рис.2.

Система уравнений электрического равновесия схемы для мгновенных значений величин:

Последнее соотношение здесь, конечно, не уравнение, а обозначение выходной величины.

Уравнения в операторной форме:

Из уравнения (2)

Подставим полученное значение I2p в уравнение(3):

Последнее соотношение подставим в уравнение (1) и определим передаточную функцию:

Где - коэффициент передачи,

, - постоянные времени.