Виды группировок и решаемые задачи, определение числа групп и величины интервалов в аналитических группировках.

Группировка –это объединение отдельных единиц совокупности в группы, однородные по каким-либо признакам.

При проведении группировки приходится решать ряд задач:
1) выделение группировочного признака;
2) определение числа групп и величины интервалов;
3) при наличии нескольких группировочных признаков описание того, как они комбинируются между собой;
4) установление показателей, которыми должны характеризоваться группы, т.е. сказуемого группировки.

Статистические группировки и классификации преследуют цели выделения качественно однородных совокупностей, изучения структуры совокупности, исследования существующих зависимостей. Каждой из этих целей соответствует особый вид группировки: типологическая, структурная, аналитическая (факторная).

Типологическая группировка решает задачу выявления и характеристики социально-экономических типов (частных подсовокупностей).

Структурная дает возможность описать составные части совокупности или строение типов, а также проанализировать структурные сдвиги.

Аналитическая(факторная) группировка позволяет оценивать связи между взаимодействующими признаками.

В зависимости от числа положенных в их основание признаков различают простые и многомерные группировки.

Группировка, выполненная по одному признаку, называется простой.

Многомерная группировка производится по двум и более признакам. Частным случаем многомерной группировки является комбинационная группировка, базирующаяся на двух и более признаках, взятых во взаимосвязи, в комбинации.

Структурная группировка применяется для характеристики структуры совокупности и структуры сдвигов.

Структурный называется группировка, в которой происходит разделение выделенных с помощью технологической группировки типов явлений, однородных совокупностей на группы, характеризующие их структуру по какого либо варьирующему признаку. Например, группировка населения по размеру среднедушевого дохода. Анализ структурных группировок взятых за ряд периодов или моментов времени, показывает изменения структуры изучаемых явлений, то есть структурные сдвиги. В изменении структуры общественных явлений отражаются важнейшие закономерности их развития.

Показатель численности групп представлен либо частотой (количеством единиц в каждой группе), либо частотностью (удельным весом каждой группы).

Среди простых группировок особо выделяют ряды распределения.

Ряд распределения – это группировка, в которой для характеристики групп (упорядоченно расположенных по значению признака) применяется один показатель – численность группы. Другими словами, это ряд чисел, показывающий, как распределяются единицы некоторой совокупности по изучаемому признаку.

Ряды, построенные по атрибутивному признаку, называются атрибутивными рядами распределения.

Ряды распределения, построенные по количественному признаку, называются вариационными рядами.

Примером атрибутивных рядов могут служить распределения населения по полу, занятости, национальности, профессии и т.д.

Примером вариационного ряда распределения могут служит распределения населения по возрасту, рабочих – по стажу работы, заработной плате и т.д.

Вариационные ряды распределения состоят их двух элементов вариантов и частот.

Определение числа групп. Здесь необходимо учитывать несколько условий:
а) число групп детерминируется уровнем колеблемости группировочного признака. Чем значительнее вариация признака, тем больше при прочих равных условиях должно быть групп;
б) число групп должно отражать реальную структуру изучаемой совокупности;
в) не допускается выделение пустых групп. Если проблема пустых групп все же возникает, при проведении структурных группировок используют неравные интервалы. Для нахождения числа групп служит формула

 

где N – количество элементов совокупности.

В случае равных интервалов величина интервала может быть определена как