Внутренняя энергия, работа и тепло

Для понимания термодинамических принципов очень важными являются понятия энергии, работы и теплоты.

Энергия в широком значении – способность системы выполнять некоторую работу. Существует механическая, электрическая, химическая энергия и т.п.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех молекул, составляющих систему.

Величина внутренней энергии газа зависит от его температуры и числа атомов в молекуле газа. В одноатомных газах (например, гелии) внутренняя энергия является действительно суммой кинетической энергии молекул. В полиатомных газовых молекулах атомы могут вращаться и вибрировать. Такая молекула будет обладать дополнительной кинетической энергией.

В твердых веществах и жидкостях взаимодействие между молекулами также способствует увеличению внутренней энергии. Общая энергия системы складывается из её внутренней энергии и кинетической и потенциальной энергии системы, взятой в целом. Величина внутренней энергии зависит от параметров состояния термодинамической системы. Абсолютная величина внутренней энергии не может быть определена, но физический смысл имеет изменение внутренней энергии, которое может быть измерено.

Энергия может накапливаться и отдаваться системой. Она может передаваться от одной системы к другой. Есть две формы передачи энергии: работа и теплота. Эти величины не являются параметрами состояния системы, так как зависят от пути процесса, в ходе которого изменяется энергия системы.

Теплота является энергией, переданной от одной системы другой из-за разницы их температур.

Есть несколько путей теплопередачи: теплопроводность, конвекция и излучение.

Теплопроводность – процесс теплопередачи между объектами при их непосредственном контакте.

Процесс происходит из-за столкновения молекул, в результате чего они передают избыточную энергию друг другу.

Конвекция – это процесс теплопередачи с одного объекта на другой движением жидкости или газа.

Как электропроводность, так и конвекция требуют присутствия некоторого вещества.

Однако теплота может передаваться и через вакуум. Примером этому служит передача солнечной энергии через космическое пространство к Земле. Этот процесс называется излучением, при котором теплота передаётся электромагнитными волнами разной длины волны.

Другой формой передачи энергии от одной термодинамической системы другой является работа, которая совершается над системой при действии определённых сил или в самой системе. Путь совершения работы может быть различным. Например, газ в цилиндре может быть сжат поршнем или совершать расширение против сил давления поршня; жидкость может быть приведена в движение, а по твердому телу можно колотить молотом.

В биологических системах совершаются различные формы работы: механическая работа, выполняемая против механических сил; осмотическая работа, состоящая в транспорте различных веществ благодаря разности их концентраций; электрическая работа, заключающаяся в ионном транспорте в электрическом поле и т.п.