Взаимная перпендикулярность прямой и плоскости.

Из элементарной геометрии известно, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

Задача: Через точку К Î S построить прямую n, перпендикулярную плоскости S(а || b). Анализ решения задачи проведём на пространственном чертеже, рис. 4-2.

Чтобы провести прямую n ^ S, нужно в этой плоскости взять две пересекающиеся прямые (на рис. 4-2 это р Ç m = К). Прямую n нужно строить перпендикулярно одновременно двум этим прямым.

Однако, если прямые р и m будут прямыми общего положения, то прямой угол к ним ни на одной плоскости проекций не спроецируется в натуральную величину. Согласно теореме опроецировании прямого угла (см. свойство 2 ортогонального проецирования, модуль №1) прямой угол спроецируется в натуральную величину на какую-нибудь плоскость проекций, если одна сторона прямого угла будет параллельной этой плоскости проекций. Поэтому, в качестве прямых р и m выгодно взять горизонталь h и фронталь f (рис. 4-3). Тогда прямой угол между n и h спроецируется в натуральную величину на П1, а прямой угол между n и f - на П2.

Рис. 4-3

Плоский чертёж: На рис. 4-4 плоскость S задана параллельными прямыми а и b. Точка К(К2) принадлежит этой плоскости. Нужно построить n ^ S, n Î К.

Рис. 4-4

Согласно приведённым выше рассуждениям, в плоскости необходимо взять горизонталь и фронталь, затем, перпендикулярно каждой из них строить п. Построения начинаем с горизонтали (рис. 4-5).

Рис. 4-5

Через точку К2 проводим h2 ^ линиям связи, находим h1, а на ней, с помощью линии связи, К1. Так как n ^ h, то n1 ^ h1, поэтому проводим n1 ^ h1 через точку K1.

Аналогично находим n2 (рис. 4-6). Через точку К1 проводим f1 ^ линиям связи, находим f2. Так как n ^ f, тo n2 ^ f2, поэтому проводим n2 ^ f2 через точку К2.

Рис. 4-6

Полностью решение задачи представлено на рис. 4-7. Видимость прямой n не учитывалась.

Рис. 4-7

Алгоритмическая запись решения:

1. h Ì S, f Ì S, h Ç f = K.

2. K Î n Þ K1 Î n1, K2 Î n2.

3. n ^ h Þ n1 ^ h1;

4. n ^ f Þ n2 ^ f2.

 

Итак, чтобы задать на комплексном чертеже прямую n, перпендикулярную данной плоскости S, достаточно построить n1 и n2, расположив их в любом месте чертежа, чтобы n1^h1, n2 ^ f2, где h и f - горизонталь и фронталь плоскости, при условии, что h Ç f.

 

Если плоскость S занимает проецирующее положение, то прямая, перпендикулярная ей, является линией уровня (рис. 4-8, 4-9).

Рис. 4-8

Если S - горизонтально проецирующая:

S ^^ П1 Þ h1 = S1, f ^^ П1

n ^ h Þ n1 ^ h1; n ^ f Þ n2 ^ f 2; Þ n - горизонталь

Рис. 4-9

Если S - фронтально проецирующая:

S ^^ П2 Þ f2 = S2, h ^^ П2.

n ^ h Þ n1 ^ h1; n ^ f Þ n2 ^ f2; Þ n -фронталь

 

Чтобы лучше понять данное утверждение, нужно вспомнить , какие прямые являются линиями уровня в проецирующих плоскостях. Для этого посмотрите рис. 2-12 и 2-14 в модуле № 2.