Вычисление определителя методом исключения Гаусса
Из курса линейной алгебры известно, что определитель треугольной матрицы равен произведению диагональных элементов. В результате метода исключений Гаусса система линейных уравнений (3.2) с квадратной матрицей A приводится к эквивалентной ей системе (3.8) с треугольной матрицей An. Поэтому
det A = (-1)s det An,
где s - число перестановок строк, (s = 0, если использовался метод Гаусса по схеме единственного деления).Таким образом,
det A = (-1)s a11 aa …a (3.17)
Итак, для вычисления определителя det A необходимо выполнить процедуру прямого хода в методе Гаусса для системы уравнений Ax = 0, затем найти произведение главных элементов, стоящих на диагонали треугольной матрицы и умножить это произведение на (-1)s, где s - число перестановок строк.
Пример 3.3.
Вычислим определитель det A =
2.0 1.0 0.1 1.0
0.4 0.5 4.0 8.5
0.3 1.0 1.0 5.2
1.0 0.2 2.5 1.0
Данный определитель совпадает с определителем системы, рассмотренной в примере 3.1. Он равен произведению диагональных элементов треугольной матрицы (3.13):
det A = 2.0 0.30 16.425 1.12 = 11.0376.
Если же обратиться к примеру 3.2, то, учитывая, что была одна перестановка строк, т.е. s = 1, получим:
det A = (-1) 2.0 (-1.15) 4.28478 1.11998 = 11.0375.