Метод Ньютона (метод касательных)

вать следующий критерий окончания итераций метода Ньютона. При заданной точности > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство

|xn - xn - 1| < . (2.18)

Пример 2.3.

Применим метод Ньютона для вычисления . где a > 0, p - натуральное число. Вычисление эквивалентно решению уравнения xp = a. Таким образом, нужно найти корень уравнения f(x) = 0, f(x) = xp - a, f (x) = pxp - 1. Итерационная формула метода (2.13) примет вид:

xn +1 = xn - = xn + . (2.19)

Используя формулу (2.19), найдем с точностью = 10-3.

xn +1 = xn + .

Простой корень уравнения x3 - 7 = 0 расположен на отрезке [1, 2]. Действительно, на концах отрезка [1, 2] функция f(x) = x3 - 7 принимает разные знаки, f (1) < 0, f (2) > 0. Кроме того, при x = 2 выполнено достаточное условие сходимости (2.16): f (2)f" (2)0.

Поэтому в качестве начального приближения можно взять x0 = 2.

Результаты приведены в табл. 2.3.

Таблица 2.3

 
n xn  
0.8415 0.8861 0.8742 0.8774 0.8765