Полигональные сетки
Полигональная сетка представляет собой совокупность ребер, вершин и многоугольников. Вершины соединяются ребрами, а многоугольники рассматриваются как последовательности ребер или вершин. Сетку можно представить несколькими различными способами, каждый из них имеет свои достоинства и недостатки. Для оценки оптимальности представления используют следующие критерии:
· Объем требуемой памяти;
· Простота идентификации ребер, инцидентных вершине;
· Простота идентификации многоугольников, которым принадлежит данное ребро;
· Простота процедуры поиска вершин, образующих ребро;
· Легкость определения всех ребер, образующих многоугольник;
· Простота получения изображения полигональной сетки;
· Простота обнаружения ошибок в представлении (например, отсутствие ребра или вершины или многоугольника).
Рассмотрим три способа описания полигональных сеток.
Явное задание многоугольников
Каждый многоугольник можно представить в виде списка координат его вершин:
P = ((x1, y1, z1), (x2, y2, z2), … , (xn, yn, zn))
Вершины запоминаются в том порядке, в котором они встречаются при обходе вокруг многоугольника. При этом все последовательные вершины многоугольника, а также первая и последняя соединяются ребрами. Для каждого отдельного многоугольника данный способ записи является эффективным, однако для полигональной сетки дает потери памяти вследствие дублировании информации о координатах общих вершин.
Полигональная сетка изображается путем вычерчивания ребер каждого многоугольника, однако это приводит к тому, что общие ребра рисуются дважды – по одному разу для каждого из многоугольников.
Задание многоугольников с помощью указателей в список вершин
При использовании этого представления каждый узел полигональной сетки запоминается лишь один раз в списке вершин V =((x1, y1, z1), … , (xn, yn, zn)). Многоугольник определяется списком указателей (или индексов) в списке вершин. Многоугольник, составленный из вершин 3, 5, 7 и 10 этого списка, представляется как Р = (3, 5, 7, 10).
Такое представление имеет ряд преимуществ по сравнению с явным заданием многоугольников. Поскольку каждая вершина многоугольника запоминается только один раз, удается сэкономить значительный объем памяти. Кроме того, координаты вершины можно легко изменять. Однако все еще не просто отыскивать многоугольники с общими ребрами. Ребра при изображении всей полигональной фигуры по-прежнему рисуются дважды. Эти две проблемы можно решить, если описывать ребра в явном виде.