Высокотемпературная сверхпроводимость.

Отсутствие магнитного поля в объеме проводника позволяет заключить из общих законов магнитного поля, что в нем существует только поверхностный ток. Он физически реален и поэтому занимает некоторый тонкий слой вблизи поверхности. Магнитное поле тока уничтожает внутри проводника внешнее магнитное поле. В этом отношении сверхпроводник ведет себя формально как идеальный диамагнетик. Однако он не является диамагнетиком, поскольку внутри его намагниченность (вектор намагничивания) равна нулю.

Чистые вещества, у которых наблюдается явление сверхпроводимости, немногочисленны. Чаще сверхпроводимость наблюдается у сплавов. У чистых веществ имеет место только эффект Мейсснера, а у сплавов не происходит полного выталкивания магнитного поля из объема (наблюдается частичный эффект Мейсснера).

Вещества, в которых наблюдается полный эффект Мейсснера, называются сверхпроводниками первого рода, а частичный – сверхпроводниками второго рода.

У сверхпроводников второго рода в объеме имеются круговые токи, создающие магнитное поле, которое, однако, заполняет не весь объем, а распределено в нем в виде отдельных нитей. Что же касается сопротивления, то оно равно нулю, как и у сверхпроводников первого рода.

По своей физической природе сверхпроводимость является сверхтекучестью жидкости, состоящей из электронов. Сверхтекучесть возникает из-за прекращения обмена энергией между сверхтекучей компонентой жидкости и ее другими частями, в результате чего исчезает трение. Существенным при этом является возможность "конденсации" молекул жидкости на низшем энергетическом уровне, отделенном от других уровней достаточно широкой энергетической щелью, которую силы взаимодействия не в состоянии преодолеть. В этом и состоит причина выключения взаимодействия. Для возможности нахождения на низшем уровне многих частиц необходимо, чтобы они подчинялись статистике Бозе-Эйнштейна, т.е. обладали целочисленным спином.

Электроны подчиняются статистике Ферми-Дирака и поэтому не могут "конденсироваться" на низшем энергетическом уровне и образовывать сверхтекучую электронную жидкость. Силы отталкивания между электронами в значительной степени компенсируются силами притяжения положительных ионов кристаллической решетки. Однако благодаря тепловым колебаниям атомов в узлах кристаллической решетки между электронами может возникнуть сила притяжения, и они тогда объединяются в пары. Пары электронов ведут себя как частицы с целочисленным спином, т.е. подчиняются статистике Бозе-Эйнштейна. Они могут конденсироваться и образовывать ток сверхтекучей жидкости электронных пар, который и образует сверхпроводящий электрический ток. Выше низшего энергетического уровня имеется энергетическая щель, которую электронная пара не в состоянии преодолеть за счет энергии взаимодействия с остальными зарядами, т.е. не может изменить своего энергетического состояния. Поэтому электрическое сопротивление отсутствует.

Возможность образования электронных пар и их сверхтекучести объясняется квантовой теорией.

Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за низких их критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температурах выше 100 К (высокотемпературные сверхпроводники). Явление сверхпроводимости объясняется квантовой теорией.

Зависимость сопротивления проводников от температуры и давления используется в технике для измерения температуры (термометры сопротивления) и больших быстроизменяющихся давлений (электрические тензометры).

В системе СИ удельное электрическое сопротивление проводников измеряется в Ом×м, а сопротивление – в Ом. Один Ом – сопротивление такого проводника, в котором при напряжении 1В течет постоянный ток силой 1А.