ЭЛЕКТРИЧЕСКИЙ ТОК В ПРОВОДНИКАХ


Характеристики электрического тока. Классическая теория электропроводности металлов. Законы Ома и Джоуля-Ленца в дифференциальной форме. Законы постоянного тока в интегральной форме. Характеристики электрической цепи, э.д.с. Соединения сопротивлений и э.д.с. Правила Кирхгофа.


1.
Электродинамика – раздел учения об электричестве, в котором рассматриваются явления и процессы, связанные с движением электрических зарядов или заряженных тел.

2.
Электрический ток – всякое упорядоченной движение электрических зарядов.

1.
Электрический ток в проводящих средах под действием электрического поля – ток проводимости.

2.
Механическое движение в пространстве макроскопических объектов – конвекционный ток.

3.
Направление электрического тока – направление движения положительных зарядов.

4.
Условия существования электрического тока в проводниках:


  • - наличие свободных носителей тока;

  • - существование в проводящей среде электрического поля, энергия которого расходуется на перемещение зарядов и восполняется от источников электрической энергии.

3.
Силой электрического тока называется скалярная величина, равная отношению зарядя dq, переносимого сквозь рассматриваемую поверхность за малый промежуток времени dt, к величине этого промежутка


Для постоянного тока

 

4.
Направление электрического тока определяется вектором плотности тока j, который направлен вдоль вектора напряженности электрического поля и численно равен отношению силы тока dI сквозь малый элемент поверхности dS, нормальный к направлению движения заряженных частиц, к величине площади этого элемента


В общем виде вектор плотности тока определяется из соотношения

 

1.
Сила тока через произвольную поверхность S определяется


Для постоянного тока

 

2.
Плотность электрического тока пропорциональна напряженности Е электрического поля в проводнике и совпадает с ней по направлению (закон Ома в дифференциальной форме)


где γ – удельная проводимость среды (удельная электропроводность); ρ – удельное эектрическое сопротивление среды.

 

3.
Закон Ома основан на двух предположениях:


а) концентрация электронов проводимости не зависит от напряженности электрического поля в проводнике;

б) средняя скорость упорядоченного движения электронов во много раз меньше средней скорости их теплового движения

где – средняя длина свободного пробега электронов; е – заряд электрона.

 

5.
Электропроводность металлов обеспечивается большим количеством свободных носителей заряда – электронов проводимости – коллективизированных электронов.

1.
В классической теории Друде-Лоренца электроны проводимости рассматриваются как электронный газ, обладающий свойствами идеального газа.

2.
Концентрация электронов проводимости пропорциональна концентрации атомов


(1028 ÷ 1029 м3)

где NA – постоянная Авогадро, А – атомная масса металла, ρ – его плотность.

 

3.
Средняя кинетическая энергия теплового (хаотического) движения электронов


vкв ~ 105 м/с

 

4.
Электрическое поле вызывает упорядоченное движение (дрейф) электронов. Плотность тока определяется


где – средняя скорость дрейфа электронов (< 10-4 м/с)

 

5.
Электрический ток в цепи устанавливается за время


где L – длина цепи, с – скорость света.

 

6.
В соответствии с классической теорией получается


и

где m – масса электрона; u – средняя скорость теплового движения электронов.

 

6.
На длине свободного пробега электрон под действием электрического поля приобретае скорость vmax. При соударении с ионом электрон теряет эту энергию, которая переходит во внутреннюю энергию проводника (проводник нагревается).

1.
Величина, численно равная энергии, выделяющейся в единице объема проводника за единицу времени, называется объемной плотностью тепловой мощности электрического тока.

2.
Объемная плотность тепловой мощности электрического тока равна скалярному произведению векторов плотности тока и напряженности электрического поля (закон Джоуля-Ленца)


 


  • объемная плотность тепловой мощности электрического тока не зависит от характера соударений электрона;

  • из законов сохранения энергии и импульса следует, что при столкновении иону передается только малая часть энергии электрона


- при неупругом столкновении;

- при упругом столкновении.

 

7.
Для всех металлов отношение коэффициента теплопроводности λ к удельной электрической проводимости γ прямо пропорционально температуре Т (закон Видемана-Франца)


 

8.
Недостатки классической теории электропроводности металлов:

1.
Невозможно объяснить экспериментально наблюдаемую линейную зависимость удельного электросопротивления от температуры.

2.
Неправильное значение молярной теплоемкости металлов, которавя должна складываться из теплоемкости кристаллической решетки (3R) и теплоемкости электронного газа (3R/2). Однако в соответствии с законом Дюлонга-Пти молярная теплоемкость металлов мало отличается от 3R.

3.
Экспериментальные значения удельного электросопротивления и теоретические значения средней скорости движения электронов приводят к значению длины свободного пробега, на два порядка превышающего период кристаллической решетки металла.

9.
Силы кулоновского взаимодействия вызывают такое перераспределение зарядов в проводнике, при котором потенциалы во всех точках проводника выравниваются и напряженность поля внутри проводника становится равной нулю.

1.
Для поддержания в цепи постоянного тока нужно, чтобы на носители тока действовали не только кулоновские силы, но инеэлектростатические силы, поддерживающие заданное значение напряженности электрического поля в проводнике. Такие силы называютсясторонними силами.

2.
Сторонние силы действуют внутри источников электрической энергии на носители тока, которые движутся против сил электростатического поля.

10.
Если проводник содержит источник электрической энергии, то в произвольной точке проводника существует электростатическое поле кулоновских сил с напряженностью Екул и поле сторонних сил с напряженностью Естор=Fстор/q, а напряженность результирующего поля


 

1.
По закону Ома плотность тока


 

2.
Домножим обе части на ρ и на длину dl малого участка цепи. Для участка цепи между точками 1 и 2 (с учетом I=jS)


 

3.
Интеграл численно равен работе, которую совершают кулоновские силы по перемещению единичного положительного заряда из точки 1 в точку 2


 

4.
Второй интеграл численно равен работе сторонних сил по перемещению единичного положительного заряда из точки 1 в точку 2. Этот интеграл определяет понятие электродвижущей силы


 

5.
Напряжением U12 на участке цепи 1 – 2 называется физическая величина, численно равная работе, совершаемой кулоновскими и сторонними силами при перемещении единичного положительного заряда из точки 1 в точку 2


 

6.
Сопротивлением R12 участка цепи между точками 1 и 2 называется интеграл


Для однородного проводника постоянного сечения

 

7.
Обобщенный закон Ома (закон Ома в интегральной форме) для произвольного участка цепи


 

8.
В неразветвленной замкнутой электрической цепи сила тока во всех сечениях одинакова, а сама цепь является участком с совпадающими концами.


где ξ – алгебраическая сумма всех ЭДС, приложенных в цепи.

 

9.
Если замкнутая цепь состоит из источника электрической энергии с ЭДС ξ и внутренним сопротивлением r, а сопротивление внешней части цепи равно R, то закон Ома имеет вид


а разность потенциалов на клеммах источника равна напряжению на внешней части цепи

 

10.
Если цепь разомкнута, то в ней тока нет и


 

11.
При прохождении тока по проводнику в соответствии с законом Джоуля-Ленца выделяется теплота


 

11.
Расчет разветвленных цепей состоит в отыскании токов в различных участках таких цепей по заданным значениям сопротивления участков цепи и приложенным в них ЭДС.

1.
Узлом называется точка разветвленной цепи, в которой сходится более двух проводников.

2.
Первое правило Кирхгофа (правило узлов): алгебраическая сумма токов, сходящихся в узле, равна нулю.


 

3.
Второе правило Кирхгофа (правило контуров): в любом замкнутом контуре, произвольно выбранном в разветвленной цепи, алгебраическая сумма произведений токов Ii на сопротивления Ri соответствующих участков этого контура равна алгебраической сумме ЭДС в контуре


 

4.
Второе правило Кирхгофа позволяет рассчитывать величины токов и сопротивлений в сложных участках электрических цепей

1.
При последовательном соединении проводников с сопротивлениями R1, R2 и R3 можно записать


но для неразветвленной цепи и

Это означает, что при последовательном соединении проводников сопротивление цепи равно сумме сопротивлений проводников, составляющих цепь.

 

2.
При параллельном соединении проводников с сопротивлениями R1, R2 и R3 можно записать


но, применяя первое правило Кирхгофа для любого узла, получим

и тогда

Это означает, что при параллельном соединении проводников сопротивление цепи равно сумме обратных величин сопротивлений проводников, составляющих цепь.