Области практического применения генной инженерии

 

Создание трансгенных растений.

Ещё 10 лет тому назад биотехнология растений заметно отставала в своем развитии, но за последние три года наблюдается быстрый выброс на рынок трансгенных растений с новыми полезными признаками. Трансгенные растения в США в 1996 году занимали площадь 3 млн. акров, в 1997 году площадь увеличилась до 80 млн. акров. Поскольку основные Трансгенные формы кукурузы, сои, хлопчатника с устойчивостью к гербицидам и насекомым хорошо себя зарекомендовали, то есть все основания ожидать, что площадь под генно-инженерные растения увеличится еще больше (в 4-5 раз).

В апреле 1998 года доля в процентах трансгенных форм растений в сельском хозяйстве составило:

- кукуруза - 6

- соя - 12

- хлопчатник – 15

- томаты - <1

Так как число жителей за последнее столетие увеличилось с 1.5 до 5.5 млрд. человек, а к 2020 году предполагается вырост до 8 млрд., таким образом, возникает огромная проблема, стоящая перед человечеством. Эта проблема заключается в огромном увеличении производства продуктов питания, несмотря на то, что за последние 40 лет производство увеличилось в 2.5 раза, все равно этого недостаточно. И в мире в связи с этим наблюдается социальный застой, который становится все более настоятельным. Другая проблема возникла с медицинским лечением. Несмотря на огромные достижения современной медицины, производимые сегодня лекарственные препараты столь дороги, что ¾ населения земли сейчас полностью полагаются на традиционные донаучные методы лечения, прежде всего на неочищенные препараты растительного происхождения.

В развитых странах лекарственные средства на 25% состоят из природных веществ, выделенных из растений. Открытия последних лет (противоопухолевые препараты: таксол, подофиллотоксин) свидетельствуют о том, что растения еще долго будут оставаться источником биологически-активных веществ (БАД), и что способности растительной клетки к синтезу сложных БАД все еще значительно превосходят синтетические способности инженера-химика. Вот почему ученые взялись за проблему создания трансгенных растений.

Отсчет истории генетической инженерии растений принято вести с 1982 года, когда впервые были получены генетически трансформированные растения. Метод трансформации основывается на природной способности бактерий Agrobacterium tumefaciens генетически модифицировать растения. Реконструированные штаммы Agrobacterium, содержащие неонкогенные варианты Ti-плазмид и обладающие повышенной вирулентностью, стали основой одного из наиболее популярных методов трансформации. Первоначально трансформация применялась для генно-инженерных двудольных растений, однако работы последних лет свидетельствуют, что этот метод эффективен и в отношении кукурузы, риса, пшеницы. Другим широко распространенным методом трансформации, является технология, основанная на обстреле ткани микрочастицами золота (или других тяжелых металлов), покрытыми раствором ДНК. Все выращиваемые ныне коммерческие сорта получены с помощью названных выше двух методов.

Современный арсенал методов трансформации, однако, довольно обширен и включает такие подходы, как введение ДНК в голые клетки (протопласты), электропорация клеток, микроинъекций ДНК в клетки, прокалывание клеток путем встряхивания их в суспензии микроигл, опосредованной вирусами инфекции и так далее.

Генетически измененные растения с устойчивостью к различным классам гербицидов в настоящее время являются наиболее успешным биотехнологическим продуктом. Дело в том, что биотехнология позволила совершить такой прыжок, так как оказалось возможным генетически изменять устойчивость растений к тем или иным гербицидам либо путем введения генов, кодирующих белки, не чувствительные к данному классу гербицидов, либо за счет введения генов, обеспечивающих ускоренный метаболизм гербицидов растений. К настоящему времени клонированы гены, кодирующие нечувствительные к действию гербицидов ферменты-мишени, что дало возможность получать трансгенные растения, устойчивые к таким гербицидам, как глифостат и хлорсульфуроновым, и имидазолиноновым гербицидам. Изолированы также гены, которые кодируют ферменты деградации некоторых гербицидов, что позволило получить трансгенные растения устойчивые к фосфинотрицину и далапону. В 1997 году устойчивая к Roundup соя, распространяемая компанией “As Grow”, была признана в США сельскохозяйственным продуктом года.

Ученые пошли далее. Так как множество растений подвержены нападению и поеданию со стороны насекомых, то ученые генной инженерии провели эксперимент с давно известной бактерией Bacillus-Thiringiensis, которая продуцирует белок, оказалось она является очень токсичной для многих видов насекомых, но в то же время безопасна для млекопитающих, белок (дельта-эндотоксин, CRY-белок) продуцируется различными штаммами Bacillus-Thiringiensis. Это прототоксин, который расщепляется в кишечнике насекомых, образуя активированный токсин. Активизированный белок специфично связывается с рецепторами средней кишки насекомых, что приводит к образованию пор и лизису клеток кишечного эпителия. Взаимодействие токсинов с рецепторами строго специфично, что усложняет подбор комбинации токсин-насекомое. В природе найдено большое количество штаммов Bacillus-Thiringiensis, чьи токсины действуют только на определенные виды насекомых. Препараты Bacillus-Thiringiensis в течение десятилетий использовались для контроля насекомых на полях.

Встраивание гена этого белка в геном растений дает возможность получить трансгенные растения, не поедаемые насекомыми. Но этот метод потребовал большой работы со стороны генной инженерии, в плане подборов необходимых штаммов и созданию генно-инженерных конструкций, которые дают наибольший эффект для конкретных классов насекомых. Кроме видоспецифичности по действию на насекомых встраивание прокариотических генов дельта-токсинов в геном растений даже под контролем сильных эукариотических промоторов не привело к высокому уровню экспрессии. Предположительно такое явление возникло в связи с тем, что эти бактериальные гены содержат значительно больше адеиновых и тиминовых нуклеотидных оснований, чем растительная ДНК. Эта проблема была решена путем создания модифицированных генов, где один из природного гена вырезали и добавили те или иные фрагменты с сохранением доменов, кодирующих активные части дельта-токсинов. Так, например, с помощью таких подходов был получен картофель, устойчивый к колорадскому жуку. В настоящее время так называемые Bt-растения хлопка и кукурузы занимают основную долю в общем объеме генетически модифицированных растений этих культур, которые выращивают на полях США.

Изменение свойств сельскохозяйственных технических растений.

Современная биотехнология в состоянии манипулировать многими важнейшими признаками, которые можно разделить на две группы:

1. Сельскохозяйственные производства. К ним можно отнести признаки общей продуктивности растений за счет регулирования синтеза фитогормонов или дополнительного снабжения кислородом растительных клеток, а также признаки, обеспечивающие устойчивость к разного рода вредителям, кроме этого в создании форм растений с мужской стерильностью и возможностью дольше сберегать урожай.

2. К признакам которые влияют на качество продукции, относится возможность манипулировать молекулярным весом жирных кислот. Растения будут производить биодеградирующий пластик, по цене сопоставимой с полиэтиленом, получаемым из нефти. Открылась возможность получения крахмала с заданными физико-химическими свойствами. Аминокислотный состав у растений запасных белков становится более сбалансированным и легко усвояем для млекопитающих. Растения становятся продуцентами вакцин, фармакологических белков и антител, что позволяет удешевить увеличение разных заболеваний, в том числе и онкологических. Получены и испытываются трансгенные растения хлопка с уже окрашенным волокном более высокого качества.