Гибкость макромолекул

Гибкость макромолекул – одна из важнейших характеристик полимера, определяющая его основные макроскопические свойства. Гибкость макромолекул − это способность полимерных цепей изменять свою конформацию в результате внутримолекулярного теплового движения звеньев (термодинамическая гибкость) или же под действием внешних механических сил (кинетическая гибкость). Гибкость макромолекул обусловлена тем, что мономерные звенья цепи при тепловом движении или при внешних силовых воздействиях вращаются вокруг одинарных (s-) связей.

Представление о внутреннем вращении макромолекул полимеров впервые было введено Куном, Марком и Гутом. При вращении звеньев макромолекула изменяет свою форму. Формы макромолекулы, переходящие друг в друга без разрыва химических связей, называют конформациями.Известно много типов конформаций макромолекул: конформация клубка, конформация вытянутой жёсткой палочки, конформация спирали, конформация глобулы (самая компактная), складчатая (ламелярная) конформация (обычно в кристаллических полимерах) и т.д.

Рассмотрим одну изолированную цепь полимера, атомы углерода в которой связаны только s-связями. Предположим, что валентные углы в такой цепи не фиксированы и вращение вокруг s-связей является свободным. Такую модельную цепь называют свободно сочленённой (рис. 3.4 (1).Звенья свободно сочленённой цепи могут занимать в пространстве произвольные положения независимо от положения соседних звеньев. Подобная цепь может принимать любые конформации, т.е. является предельно гибкой.

 

Рис. 3.4. Свободно сочленённая цепь (1) и цепь с фиксированными валентными углами (2)

 

В реальных цепях полимеров валентные углы имеют вполне определённую величину, и вращение звеньев происходит без их изменения (рис. 3.4(2)). Поэтому в реальной цепи звенья располагаются не произвольно: положение каждого последующего звена оказывается зависимым от положения предыдущего. Даже если предположить свободное вращение звеньев, то такая цепь может принимать меньшее число конформаций, чем свободно сочленённая. Но она способна сильно изгибаться из-за вращения звеньев. Молекулы, у которых наблюдаются достаточно интенсивные вращения звеньев вокруг s-связей, называют гибкоцепными, а полимеры со слабыми вращениями – жесткоцепными.Различают термодинамическую и кинетическую гибкость макромолекул.

Термодинамическая гибкость (равновесная гибкость) –способность макромолекул изменять свои конформации в результате внутримолекулярного теплового движения звеньев. Представим себе ситуацию, когда одна группа атомов цепи полимера получила в результате теплового движения звеньев некоторый импульс. Абсолютно жесткая молекула должна была бы под влиянием этого импульса переместиться целиком в новое положение в пространстве. В гибкой же макромолекуле перемещается только её определённый участок. Разные по величине импульсы, приложенные к разным участкам молекулы, приведут к перемещению различных по величине участков. Среднестатистический отрезок макромолекулы, перемещающийся как единое целое в элементарном акте теплового движения, называют сегментом (статистическим сегментом макромолекулы или статистическим элементом Куна). Чем жёстче цепь, т.е. чем больше активационный барьер вращения DU, тем больший отрезок цепи перемещается в элементарном акте теплового движения, т.е. тем больше по размерам сегмент. Таким образом, размер сегмента может служить мерой термодинамической гибкости макромолекул. Реальная молекула может быть представлена состоящей из N сегментов, каждый длиной А:

L = N×A, (3.1)

где L – длина цепи. У свободно сочленённой цепи А − длина звена, а у предельно жесткой макромолекулы А = L.

Представление о сегменте не является чисто формальным. Оказалось, что при измерении молярной массы полимера каким-либо физико-химическим методом, основанном на коллигативном свойстве (эбуллиоскопически, криоскопически, осмометрией и т.п.), получается, что она меньше истинной молярной массы, измеренной, например, вискозиметрическим методом, и равна молярной массе сегмента. Это означает, что макромолекулы в растворах ведут себя не как единое целое, а как совокупность малых молекул с длиной, равной длине сегмента А.

В качестве другой оценки термодинамической гибкости может служить отношение среднеквадратических размеров макромолекулы, свёрнутой в статистический клубок, к размерам, которые эта же молекула бы имела при абсолютно свободном вращении звеньев.

Кинетическая гибкость макромолекул– это способность макромолекул изменять свои конформации в результате воздействия внешних механических сил. В зависимости от соотношения энергии этих внешних воздействий и потенциального барьера вращения звеньев DU цепь полимера может в той или иной степени разворачиваться, т.е. проявлять кинетическую гибкость.

По аналогии с термодинамической гибкостью, в качестве меры кинетической гибкости может выступать длина кинетического сегмента. Действительно, если врезультате внешнего воздействия(например, мы потянули за концы полимерной ленты) одна группа атомов цепи полимера получит некоторый импульс, то в случае гибкой макромолекулы переместится только её определённый участок. Разные по величине импульсы, приложенные к разным участкам молекулы, приведут к перемещению различных по величине участков. Кинетический сегмент – это среднестатистический отрезок макромолекулы, перемещающийся как единое целое в элементарном акте внешнего воздействия. Чем короче сегмент, тем выше кинетическая гибкость макромолекулы.

Чаще всего в качестве меры кинетической гибкости принято рассматривать температуру стеклования – температурный интервал перехода полимера из стеклообразного в высокоэластическое состояние. Чем выше температура стеклования полимера, тем ниже кинетическая гибкость его макромолекул.

Универсальным и распространенным методом определения Тст и Тт, а также исследования деформационных свойств полимеров является термомеханический метод. Метод состоит в измерении зависимости деформации e от температуры Т, графическое изображение этой зависимости называют термомеханической кривой (рис. 3.5).

 

Рис. 3.5. Термомеханическая кривая линейного аморфного полимера

 

Для аморфных линейных полимеров высокой молекулярной массы термомеханическая кривая имеет три участка, соответствующие трем физическим состояниям.

Первый участок (1) соответствует стеклообразному состоянию, для которого характерны малые деформации, второй (2) − высокоэластическому состоянию с большими обратимыми деформациями. На эти деформации накладывается (при длительном действии нагрузки) деформация течения, которая с повышением температуры увеличивается. При достаточно высоких температурах перемещения цепей как единого целого настолько облегчаются, что наступает истинное течение полимера. Полимер переходит в вязкотекучее состояние. Этот переход сопровождается резким увеличением деформации (участок 3).

Температуры Тст и Тт соответствуют средним значениям интервалов температуры, при которых происходит переход от одного физического состояния полимера в другое.

В зависимости от свободного объема полимер­ное вещество находится в одном из физических состояний − стеклообраз­ном, высокоэластическом, вязкотекучем. Переходы из одного состояния в другое происходят без выделения или поглощения теплоты. Температуры переходов называются температурами стеклования Тсти текучести Тт.

Ниже Тстмежмолекулярное притяжение исключает повороты во­круг связей, однако оно недостаточно сильно, чтобы исключить такие по­вороты под действием внешней нагрузки.

Полимеры под нагрузкой проявляют низкую жесткость и ползучесть. Низкая жесткость является результатом обратимых поворотов вокруг свя­зей и искажений углов между связями при кратковременном действии на­грузки. При длительном действии нагрузки деформация по сути является результатом необратимых поворотов вокруг связей и называется выну­жденной высокоэластичной деформацией. Вытянутые молекулы предста­вляют одну из разновидностей неравновесных структур.

Надмолекулярные структуры термопластов ниже Тстзависят от условий обработки и охлаждения материала и обычно оказываются не­равновесными. Сохранение неравновесных структур в изделиях являет­ся характерной особенностью термопластов. Получение одно- или двух­осной ориентации в полимерных пленках используют для повышения прочности; полимерные волокна с ориентированной структурой образуют важную группу высокопрочных волокон.

Переход неравновесных структур в равновесные сопровождается коро­блением и усадкой изделий во время эксплуатации. Для уменьшения этого недостатка используют термическую стабилизацию — отжиг − при темпера­турах, превышающих максимальные температуры эксплуатации.

Надмолекулярные структуры, в которых растягивающие напряжения от внешней 1201569435861782" data-ad-slot="2853903535">


Дата добавления: 2015-04-01; просмотров: 457; Опубликованный материал нарушает авторские права?.