Достаточные условия идентификации
Определитель матрицы
, составленной из коэффициентов при переменных, отсутствующих в данном уравнении,
не равен нулю и ранг этой матрицы (число независимых строк или столбцов) не меньше числа эндогенных переменных системы k минус единица: 
Для определения коэффициентов идентифицируемых моделей можно применять косвенный МНК. Для сверхидентифицируемых моделей применяется двухшаговый МНК.
Пример.Оценить идентифицируемость системы с помощью счетных правил(6.20).

Уравнение (6.21а). Число эндогенных переменных
. Число предопределенных переменных, отсутствующих в уравнении,
, следовательно, уравнение (6.21а) идентифицируемо.
Уравнение (6.21б).
.
.
, уравнение идентифицируемо.
Уравнение (6.21в).
.
.
, уравнение идентифицируемо.
Пример.Оценить идентифицируемость системы с помощью счетных правил (6.20).

Уравнение (6.22а). Число эндогенных переменных
. Число предопределенных переменных, отсутствующих в уравнении,
, следовательно, уравнение (6.226а) идентифицируемо.
Уравнение (6.22б).
.
.
, уравнение сверхидентифицируемо.
Уравнение (6.22в).
.
.
, уравнение сверхидентифицируемо.
Пусть теперь в системе (6.22) уравнение (6.22в) имеет вид

Для этого уравнения:
.
.
. Уравнение неидентифицируемо.
Пример.Проверить необходимые и достаточные условия идентифицируемости в системе

Уравнение (6.23а).
.
.
. Необходимое условие идентификации выполняется.
| Уравнения Переменные |
|
| (6.23б) (6.23в) |
0 0
|
, следовательно, уравнение (6.23а) нельзя считать идентифицируемым.
Уравнение (6.23б).
.
.
. Необходимое условие идентификации выполняется.

Число эндогенных переменных
.
. Достаточное условие выполняется, уравнение идентифицируемо.
Уравнение (6.23в).
.
.
. Необходимое условие идентификации выполняется.

. Уравнение неидентифицируемо.
Пример.Проверить необходимые и достаточные условия идентифицируемости в системе:

Особенности системы (6.24): наличие свободных членов, не влияющих на идентифицируемость. Наличие балансового уравнения (6.24г), в котором коэффициенты при переменных равны единице, не требующего идентификации.
Уравнение (6.24а).
.
.
. Необходимое условие идентификации выполняется.

,
Уравнение идентифицируемо.
Уравнение (6.24б).
.
.
Необходимое условие идентификации выполняется.

,
Уравнение идентифицируемо.
Уравнение (6.24в).
.
.
. Необходимое условие идентификации выполняется.
(6.25)
Уравнение идентифицируемо.
0 0