ЭЛЕМЕНТЫ, УСИЛЕННЫЕ ОБОЙМОЙ

5.34. Несущая способность существующих каменных конструкций (столбов, простенков, стен и др.) может оказаться недостаточной при реконструкции зданий, надстройках, а также при наличии дефектов в кладке. Одним из наиболее эффективных методов повышения несущей способности существующей каменной кладки является включение ее в обойму. В этом случае кладка работает в условиях всестороннего сжатия, что значительно увеличивает ее сопротивляемость воздействию продольной силы.

Применяются три основных вида обойм: стальные, железобетонные и армированные растворные.

Основными факторами, влияющими на эффективность обойм, являются: процент поперечного армирования обоймы (хомутами), марка бетона или штукатурного раствора и состояние кладки, а также схема передачи усилия на конструкцию.

С увеличением процента армирования хомутами прирост прочности кладки растет непропорционально, а по затухающей кривой.

Опытами установлено, что кирпичные столбы и простенки, имеющие трещины, а затем усиленные обоймами, полностью восстанавливают свою несущую способность.

5.35. Стальная обойма состоит из вертикальных уголков, устанавливаемых на растворе по углам усиливаемого элемента, и хомутов из полосовой стали или круглых стержней, приваренных к уголкам. Расстояние между хомутами должно быть не более меньшего размера сечения и не свыше 50 см (черт. 15, а). Стальная обойма должна быть защищена от коррозии слоем цементного раствора толщиной 25-30 мм. Для надежного сцепления раствора стальные уголки закрываются металлической сеткой.

5.36. Железобетонная обойма выполняется из бетона марок 150-200 с армированием вертикальными стержнями и сварными хомутами. Расстояние между хомутами должно быть не свыше 15 см. Толщина обоймы назначается по расчету и принимается от 6 до 10 см (черт. 15,б).

5.37. Обойма из раствора армируется аналогично железобетонной, но вместо бетона арматура покрывается слоем цементного раствора марки 50-100 (черт. 15, в).

Черт. 15. Схема усиления кирпичных столбов обоймами.

а - металлической; б - железобетонной; в - армированной штукатуркой; 1 – планка f1 сечением 35´5 - 60´12 мм; 2 - сварка; 3 - стержни диаметром 5-12 мм; 4 - хомуты диаметром 4-10мм; 5 - бетон класса В7,5 -В15; 6 - штукатурка (раствор марки 50-100)

5.38. Расчет конструкций из кирпичной кладки, усиленной обоймами, при центральном и внецентренном сжатии при эксцентриситетах, не выходящих за пределы ядра сечения, производится по формулам:

при стальной обойме

; (71)

при железобетонной обойме

; (72)

при армированной растворной обойме

. (73)

Коэффициенты y и h принимаются при центральном сжтии y = 1 и h = 1; при внецентренном сжатии (по аналогии с внецентренно сжатыми элементами с сетчатым армированием):

; (74)

; (75)

В формулах (71) - (75):

N - продольная сила;

А - площадь сечения усиливаемой кладки;

s - площадь сечения продольных уголков стальной обоймы или продольной арматуры железобетонной обоймы;

Аb - площадь сечения бетона обоймы, заключенная между хомутами и кладкой (без учета защитного слоя);

Rsw - расчетное сопротивление поперечной арматуры обоймы;

Rsc - расчетное сопротивление уголков или продольной сжатой арматуры;

j - коэффициент продольного изгиба (при определении j значение a принимается как для неусиленной кладки);

mg - коэффициент, учитывающий влияние длительного воздействия нагрузки, пп.[4.1, 4.7];

mk - коэффициент условий работы кладки, принимаемый равным 1 для кладки без повреждений и 0,7 - для кладки с трещинами;

mb - коэффициент условий работы бетона, принимаемый равным 1 - при передаче нагрузки на обойму и наличии опоры снизу обоймы, 0,7 - при передаче нагрузки на обойму и отсутствии опоры снизу обоймы и 0,35 - без непосредственной передачи нагрузки на обойму;

m - процент армирования хомутами и поперечными планками, определяемый по формуле

, (76)

где h и b - размеры сторон усиливаемого элемента;

s - расстояние между осями поперечных связей при стальных обоймах (h ³ s £ b, но не более 50 см) или между хомутами при железобетонных и штукатурных обоймах (s£15 см).

5.39. Расчетные сопротивления арматуры, применяемой при устройстве обойм, принимаются по табл.10.

Таблица 10

Армирование Расчетные сопротивления арматуры, МПа (кгс/см3)
сталь класса A-I сталь класса A-II
Поперечная арматура 150 (1500) 190 (1900)
Продольная арматура без непосредственной передачи нагрузки на обойму 43 (430) 55 (550)
То же, при передаче нагрузки на обойму с одной стороны 130 (1300) 160 (1600)
То же, при передаче нагрузки с двух сторон 190 (1900) 240 (2400)

5.40. С увеличением размеров сечения (ширины) элементов при соотношении их сторон от 1:1 до 1:2,5 эффективность обойм несколько уменьшается, однако это уменьшение незначительно и практически его можно не учитывать.

Когда одна из сторон элемента, например, стена (черт. 16), имеет значительную протяженность, то необходима установка дополнительных поперечных связей, пропускаемых через кладку и располагаемых по длине стены на расстояниях не более 2d и не более 100 см, где d - толщина стены. По высоте стены расстояние между связями должно быть не более 75 см. Связи должны быть надежно закреплены. Расчет дополнительных поперечных связей производится по формуле (72), при этом коэффициент условий работы связей принимается равным 0,5.

Черт. 16. Схема усиления стены железобетонной обоймой

1 - металлическая сетка; 2 - дополнительные стержни, расположенные сверх сетки; 3 - хомуты (связи); 4 - бетон обоймы; 5 - кладка стены

Пример 8. Определение несущей способности кирпичного столба с сетчатым армированием.

Определить расчетную несущую способность и необходимое сетчатое армирование кирпичного столба размером в плане 0,51´0,64 м с расчетной высотой 3 м. Расчетная продольная сила N = 800 кН (80 тc) и приложена с эксцентриситетом е0=5 см в направлении стороны сечения столба, имеющей размер 0,64 м. Столб выполнен из глиняного кирпича пластического прессования марки 100 на растворе марки 75.

Площадь сечения столба А =0,51×0,64 = 0,3264 м2. Упругая характеристика кладки по п. [3.21, табл. 15] a=1000; коэффициент продольного изгиба по п. [4.2, табл. 18] j=0,98. Расчетное сопротивление кладки по п. [3.1, табл. 2] R=1,7 МПа (при А>0,3 м2). Расчетную несущую способность Ncc для столба из неармированной кладки определяем по формуле [13]

Ncc<mgj1RAcw = 1×0,97×1,7×0,3264×0,844×1,08×103=490 кH<N=800 кН.

j1, Ас и w определены по формулам [14] и [15], табл. [19] п. [4.7]; mg=1, так как толщина столба более 30 см.

Расчетная несущая способность столба Ncc оказалась в 1,7 раза меньше расчетной продольной силы N, следовательно, необходимо усиление кладки сетчатым армированием.

Определяем необходимое Rskb=1,7×1,7 = 2,9 МПа.

Принимаем арматуру Вр-1 диаметром 4 мм. Расчетное сопротивление Rs =219 МПа по п. 5.6.

return false">ссылка скрыта

Процент сетчатого армирования определяем по п. [4.31]

%

По формуле [6] п. [3.20] определяем

МПа.

Rsn=243 МПа принимается по п. 5.6.

По формуле [4] п. [3.20] определяем

.

При lhc=4,7 по формуле [15] и табл. [18] пп. [4.2] и [4.7] определяем по интерполяции j=0,97; jс=05 и j1=0,96.

По формуле [31] п. [4.31] определяем

МПа<2R=3,4 МПа.

Проверяем расчетную несущую способность столба по формуле [30] п. [4.31]

кН (83 тс > 80 тс).

Дополнительно проверяем расчетную несущую способность столба при центральном сжатии в плоскости, перпендикулярной к действию изгибающего момента по формуле [27] п. [4.30]

МПа > 2R=3,4 МПа

Принимаем Rsk = 3,4 МПа.

.

По табл. [18] п. [4.2] j = 0,96. По формуле [26] п. [4.30]

кН >N = 800 кН (106 тc > 80 тc).

Следовательно, расчетная несущая способность столба, армированного сетчатой арматурой, при m=0,40% достаточна.

Принимаем диаметр проволоки для сеток 4 мм с расположением через два ряда кладки и исходя из 0,40% армирования по табл. 9 определяем размер ячейки в плане 3,2´3,2 см. Крайние стержни располагаются от наружных граней столба (защитный слой) на 1,5 см.

Пример 9. Расчет усиления кирпичного простенка стальной обоймой.

Требуется запроектировать усиление простенка в существующем жилом доме. Кладка простенков выполнена из глиняного кирпича пластического формования марки 75 на растворе марки 25. Размер сечения простенка 54´103 см, высота 180 см; расчетная высота стены - 2,8 м. Кладка простенка выполнена с утолщенными швами низкого качества, в кладке имеются небольшие начальные трещины в отдельных кирпичах и вертикальных швах. Это свидетельствует о том, что напряжение в кладке достигло примерно 0,7Ru (временного сопротивления). На простенок действует вертикальное усилие, равное 600 кН (60 тc), приложенное с эксцентриситетом 5 см по отношению к толщине стены.

По архитектурным соображениям усиление кладки принимается посредством включения простенка в стальную обойму из уголков, согласно указаниям п. 5.35, 5.38.

Необходимое увеличение несущей способности простенка за счет поперечной арматуры обоймы определяем из формулы (71):

,

где .

По п. [4.2, табл. 18] при l=5,2 и a=1000 j1»j=0,98; mg=1 принимаем согласно п. [4.7]; по п. [3.1, табл. 2] R=1,1 МПа; mk=0,7.

Принимаем для обоймы сталь класса A-I. Вертикальная арматура обоймы (уголки) принимается по конструктивным соображениям 41_50´50 мм

А¢s=4×4,8=19,2см2.

По табл. 10 Rsc=43,0 МПа и Rsw=150 МПа.

По формуле (75)

.

Согласно формуле (71)

;

,

откуда m=0,35 %.

Принимаем расстояние между осями поперечных хомутов обоймы 35 см и определяем их сечение из условия %.

По формуле (76)

;

;

см2.

Принимаем полосу сечением 30´8 мм; Аs=2,4 см2; Ст A-I.

Пример 10. В связи с надстройкой здания требуется запроектировать усиление внутренней несущей кирпичной стены толщиной в 1,5 кирпича (38 см). Высота стены от уровня пола до низа перекрытия сборного настила 3,0 м. Кладка стены выполнена из сплошного глиняного кирпича пластического формования марки 75 на растворе марки 25. Состояние кладки удовлетворительное. После надстройки на 1 м стены будет передаваться нагрузка N = 750 кН (75т).

Aс=0,38 м2.

По табл. [2, 15 и 18], пп. [3.1, 3.21, 4.2] R=1,1 МПа; a=1000; l= =7,9; j=0,92; по формуле [16] п. [4.7] mg=1.

Расчетная несущая способность 1 м стены

Ncc=jmgRA=0,92×1,1×0,38×103=385 кН<N=750 кН.

Требуется усиление стены, которое осуществляем посредством включения стены в двухстороннюю железобетонную обойму с установкой дополнительных поперечных стальных связей.

Толщину железобетонных стенок по конструктивным соображениям принимаем минимальной, равной 6 см. Бетон класса В12,5 и армирование стальной сеткой из стержней диаметром 5 мм с ячейкой 15´15 см. Кроме того, для обеспечения работы железобетонных стенок как обоймы сверх сеток ставим вертикальные стержни из круглой стали диаметром 16 мм через каждые 50 см и поперечные связи диаметром 16 мм через 50 см по высоте и длине стены.

Расчетную несущую способность 1 м стены, усиленной железобетонной обоймой, определяем по формуле (72). При этом принимаем, что усилие непосредственно на железобетонную обойму не передается; коэффициент условий работы железобетона принимаем mb=0,35. При определении поперечного армирования обоймы учитываем только поперечные связи диаметром 16 мм, расположенные через 50 см по длине и высоте стены.

Определяем процент армирования поперечными связями:

%,

где Vs и Vk - соответственно объем стержня (связей) и объем кладки;

А = 2,01 см2 - площадь сечения одного стержня;

hw - толщина стены.

Вертикальное армирование обоймы принято: Ст A-I, 7Æ5 мм в 2Æ16 мм на каждые 50 см длины стены. Площадь арматуры на 1 м стены

As¢=2(1,37+4,02)=10,78 см2;

Ab=2×6×100=1200 см2.

Коэффициент j принимаем в запас прочности как для кирпичной кладки, учитывая высоту сечения с учетом обоймы

a=1000; lh= =6,25;

j=0,96; Rb=7,0 МПа.

По табл. 10 для связей Rs - 150 МПа.

По формуле (72) с учетом коэффициента условий работы 0,5 согласно п. 5.40 определяем расчетную несущую способность

Таким образом, принятое усиление стены достаточно.

6. РАСЧЕТ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПО
ПРЕДЕЛЬНЫМ СОСТОЯНИЯМ ВТОРОЙ ГРУППЫ
(ПО ОБРАЗОВАНИЮ И РАСКРЫТИЮ
ТРЕЩИН И ДЕФОРМАЦИЯМ)

6.1. Расчет элементов конструкций по предельным состояниям второй группы производится по указаниям и формулам, приведенным в пп. [5.1-5.5].

Расчет по раскрытию трещин при учете особых нагрузок или воздействий не требуется.

6.2. Расчет каменных и армокаменных конструкций по предельным состояниям второй группы производится:

по деформациям на воздействие нормативных нагрузок;

по раскрытию трещин на воздействие расчетных или нормативных нагрузок.

6.3. Если деформации растяжения кладки вызваны перемещениями каркаса или ветровых поясов, поддерживающих самонесущие или навесные стены, то предельные деформации растяжения кладки принимаются равными єu=0,15×10-3 в зданиях с предполагаемым сроком службы конструкций не менее 100 лет, єu=0,2×10-3 в зданиях с предполагаемым сроком службы конструкций не менее 50 лет.

При наличии продольного армирования в количестве m³0,03%, а также при оштукатуривании неармированных конструкций по сетке приведенные выше значения єu увеличиваются на 25%.

6.4. При расчете по трещинам конструкций из неармированной и армированной кладки, в которых раскрытие швов может вызвать появление трещин в штукатурке, но не является опасным для прочности и устойчивости конструкций, в формулах расчета на прочность по растяжению всех видов Rt, Rtb и Rtw принимаются продольные силы и изгибающие моменты по нормативным нагрузкам и коэффициенты условий работы по табл. [24].

Примечания: 1. Расчет по несущей способности конструкций, указанных в п. 6.4, следует производить с учетом расчленения конструкций после возникновения трещин или образования шарниров в сечениях с раскрытием швов.

2. При невыполнении требований расчета по трещинам, указанных в п. 6.4, в местах раскрытия швов необходимо предусматривать деформационные швы.

6.5. Расчет продольно армированных растянутых, изгибаемых и внецентренно сжатых каменных конструкций по раскрытию трещин (швов кладки) следует производить исходя из следующих предпосылок:

расчет производится для всего сечения кладки и арматуры (без учета раскрытия швов), принимая закон линейного распределения напряжений по сечению;

расчетные сопротивления арматуры Rs, МПа (кгс/см2), принимаются по табл. 11.

6.6. При расчете продольно армированных внецентренно сжатых, изгибаемых и растянутых каменных конструкций по раскрытию трещин (швов кладки) сечение конструкций приводится к одному материалу (стали) в отношении модулей упругости кладки и стали

. (77)

Площадь сечения, расстояние центра тяжести сечения до сжатой грани и момент инерции приведенного сечения определяются по формулам:

Ared=nredA+As+As1; (78)

; (79)

Ired=nredI+nredA(yred-y)2+As(h0-yred)2+As1(yred-a1)2. (80)

В формулах (77)-(80):

nred - отношение модулей упругости кладки и стали;

А, у, I - площадь сечения, расстояние от центра тяжести сечения до сжатой грани и момент инерции сечения кладки;

Ared, Vred, Ired - те же величины для приведенного сечения;

As - площадь сечения растянутой арматуры;

As1 - площадь сечения сжатой арматуры;

h0=h-а - рабочая высота сечения;

а - расстояние от центра тяжести растянутой арматуры до растянутого края сечения;

а1 - расстояние от центра тяжести сжатой арматуры до сжатого края сечения.

Таблица 11

Конструкции Условия работы Расчетные сопротивление арматуры при предполагаемом сроке службы конструкций, лет
Продольно армированные изгибаемые и растянутые элементы в условиях агрессивной для арматуры среды Растяжение кладки в горизонтальном направлении (по перевязанному сечению) 42 (420) 60 (600) 60 (600)
Растяжение кладки в вертикальном направлении (по неперевязанному сечению) 25 (250) 35 (350) 35 (350)
Продольно армированные емкости при наличии требований непроницаемости покрытий каменных конструкций Гидроизоляционная штукатурка 17 (170) 25 (250) 35 (350)
Кислотоупорная штукатурка на жидком стекле и однослойное покрытие из плиток каменного литья на кислотоупорной замазке 12 (120) 15 (150) 15 (150)
Двух- и трехслойное покрытие из прямоугольных плиток каменного литья на кислотоупорной замазке:      
растяжение вдоль длинной стороны плиток 30 (300) 35 (350) 35 (350)
растяжение вдоль короткой стороны плиток 17 (170) 25 (250) 25 (250)

6.7 Расчет по раскрытию трещин продольно армированных каменных конструкций производится по формулам:

N£grRsAred; (81)

на изгиб

; (82)

на внецентренное сжатие

; (83)

на внецентренное растяжение

. (84)

В формулах (81)-(84):

Rs - расчетное сопротивление арматуры оо раскрытию треаетн;

N и М - продольная сила и момент от нормативных нагрузок (при расчете конструкции по раскрытию трещин в штукатурных и плиточных покрытиях усилия определяются по нормативным нагрузкам, которые будут приложены после нанесения покрытия);

gr - коэффициент условия работы кладки при расчете по раскрытию трещин по табл. [24] с учетом примечания к ней;

Ared, yred, Ired – параметры приведенного сечения по формулам (78)-(80);

- эксцентриситет продольной силы N