Зависимость константы скорости реакции от температуры

Скорость большинства химических реакций возрастает при повышении температуры. Так как концентрация реагирующих веществ, практически не зависит от температуры, то в соответствии с кинетическим уравнением реакции основное влияние температуры на скорость реакции осуществляется через изменение константы скорости реакции. При увеличении температуры возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение.

Зависимость скорости реакции от температуры можно характеризовать величиной температурного коэффициента .

Экспериментальные данные по влиянию температуры на скорость многих химических реакций при обычных температурах (273–373 К), в небольшом интервале температур показали, что повышение температуры на 10 градусов увеличивает скорость реакции в 2-4 раза (правило Вант-Гоффа).

По Вант-Гоффу- температурный коэффициент константы скорости (коэффициент Вант-Гоффа) – это возрастание скорости реакции при увеличении температуры на 10 градусов.

 

(4.63)

где и — константы скорости при температурах и ; — температурный коэффициент скорости реакции.

При повышении температуры на n десятков градусов отношение констант скоростей будет равно

 

, (4.64)

где n может быть как целым, так и дробным числом.

Правило Вант-Гоффа это приближенное правило. Оно применимо в узком интервале температур, так как температурный коэффициент изменяется с температурой.

Более точная зависимость константы скорости реакции от температуры выражается полуэмпирическим уравнением Аррениуса

(4.65)

где А - предэкспоненциальный множитель который не зависит от температуры, а определяется только видом реакции; Е – энергия активации химической реакции. Энергию активации можно представить как некоторую пороговую энергию, характеризующую высоту энергетического барьера на пути реакции. Энергия активации также не зависит от температуры.

Эта зависимость установлена в конце XIX в. голландским ученым Аррениусом для элементарных химических реакций.

Энергия активации прямой (Е1 ) и обратной (Е2 ) реакции связана с тепловым эффектом реакции DН соотношением (см. рис 1):

Е1 Е2 = DН.

Если реакция эндотермическая и DН> 0, то Е1 > Е2 и энергия активации прямой реакции больше обратной. Если реакция экзотермическая, то Е1 < Е2.

Уравнение Аррениуса (101) в дифференциальной форме можно записать:

 

. (4.66)

Из уравнения следует, что чем больше энергия активации Е, тем быстрее растет скорость реакции с температурой.

Разделив переменные k и T и, считая E постоянной величиной, после интегрирования уравнения (4.66) получим:

Рис. 5. График lnk 1/T.

, (4.67)

где А – предэкспоненциальный множитель, имеющий размерность константы скорости. Если это уравнение справедливо, то на графике в координатах опытные точки располагаются на прямой линии под углом a к оси абсцисс и угловой коэффициент ( ) равен , что позволяет рассчитать энергию активации химической реакции по зависимости константы скорости от температуры по уравнению .

Энергию активации химической реакции можно вычислить по значениям констант скоростей при двух различных температурах по уравнению

. (4.68)

Теоретический вывод уравнения Аррениуса сделан для элементарных реакций. Но опыт показывает, что подавляющее большинство сложных реакций также подчиняются этому уравнению. Однако для сложных реакций энергия активации и предэкспоненциальный множитель в уравнении Аррениуса не имеют определенного физического смысла.

Уравнение Аррениуса (4.67) позволяет дать удовлетворительное описание большого круга реакций в узком температурном интервале.

Для описания зависимости скорости реакции от температуры применяют также модифицированное уравнение Аррениуса

,(4.69)

в которое входят уже три параметра:А, Е и n.

Уравнение (4.69) широко используется для реакций, протекающих в растворах. Для некоторых реакций зависимость константы скорости реакции от температуры отличается от приведенных выше зависимостей. Так, например, в реакциях третьего порядка константа скорости убывает с увеличением температуры. В цепных экзотермических реакциях константа скорости реакции резко возрастает при температуре выше некоторого предела (тепловой взрыв).

4.5.1. Примеры решения задач

Пример 1. Константа скорости некоторой реакции с увеличением температуры изменялась следующим образом: t1 = 20°С;

k1 = 2,76 10-4 мин.-1; t2 = 50 0С; k2= 137,4 10-4 мин.-1 Определить температурный коэффициент константы скорости химической реакции.

Решение. Правило Вант –Гоффа позволяет рассчитать температурный коэффициент константы скорости по соотношению

gn = =2 ¸ 4, где n = = =3;

g3 = =49,78 g = 3,68

Пример 2.С помощью правила Вант-Гоффа вычислить, при какой температуре реакция закончится за 15 мин., если при температуре 20 0С потребовалось 120 мин. Температурный коэффициент скорости реакции равен 3.

Решение. Очевидно, чем меньше время протекания реакции (t), тем больше константа скорости реакции:

= = = ;

3n = 8, nln3 = ln8, n= = .

Температура, при которой реакция закончится за 15 минут, равна:

20 + 1,9×10 = 39 0С.

Пример 3.Константа скорости реакции омыления уксусно-этилового эфира раствором щелочи при температуре 282,4 К равна2,37л2/моль2мин., а при температуре 287,40 К равна 3,2л2/моль2мин. Найти, при какой температуре константа скорости данной реакции равна 4?