Расчет коэффициента лобового сопротивления

Коэффициент лобового сопротивления тела вращения (бескрылого ЛА) в диапазоне сверхзвуковых скоростей можно представить в виде суммы трех составляющих:

,

где – коэффициент волнового сопротивления корпуса ЛА, рассчитываемый раздельно для головной (г) и кормовой (к) частей корпуса ЛА; – коэффициент донного сопротивления; – коэффициент сопротивления трения.

Рис. 3. Скачки уплотнения у головных частей

Волновое сопротивление. Волновое сопротивление обусловлено необратимыми потерями механической энергии в скачках уплотнения, возникающих около головной (рис. 3) и кормовой (рис. 4) частей рассматриваемой упрощенной конфигурации ЛА. Поэтому, полный коэффициент волнового сопротивления тела вращения представляем в виде суммы коэффициентов волнового сопротивления головной и кормовой частей.

Коэффициенты волнового сопротивления для рассматриваемых форм головных и кормовых частей (рис. 1 и 2) рассчитываются по следующим полуэмпирическим формулам:

  Рис. 4. Скачки уплотнения у кормовых частей

Головные части

Коническая заостренная головная часть (1):

,

где – коэффициент волнового сопротивления конуса с углом полураствора равным 1 градусу.

Коническая головная часть со сферическим носком (2):

.

Коническая головная часть с плоским носком (3):

.

Параболическая головная часть и параболическая со сферическим носком (4, 5):

Параболическая головная часть с плоским носком (6):

Кормовые части

 

Коническая сужающаяся (1):

.

Коническая расширяющаяся (2):

.

Параболическая сужающаяся (3):

Параболическая расширяющаяся (4):

В приведенных зависимостях – коэффициент давления в передней критической точке (V = 0) за прямым скачком уплотнения, рассчитываемый как:

,

где – число Маха невозмущенного набегающего потока; dм – диаметр миделя ЛА (диаметр цилиндрической части); dк – диаметр кормового среза; r – радиус притупления головной части; k – показатель адиабаты (для воздуха k=1,4); Qк – угол полураствора головного или кормового конуса; Q0 – полуугол при вершине параболы.

Величины углов Qк и Q0 рассчитываются по следующим формулам:

 

а) головные части с любой формой носка:

конические ,

параболические ,

где для сферического носка и во всех остальных случаях;

 

б) кормовые части:

конические сужающаяся и расширяющаяся:

,

параболические сужающаяся и расширяющаяся:

;

При анализе влияния геометрических параметров на величину коэффициента волнового сопротивления головных частей (ГЧ) с притуплением следует иметь в виду, что в этом случае полное волновое сопротивление ГЧ является суммой двух слагаемых. Первое из них представляет собой сопротивление конуса или параболы, а второе – сферического или плоского носка. Так, например, в расчетной зависимости для конуса со сферическим притуплением первое из них – – есть не что иное, как коэффициент волнового сопротивления части конической поверхности от сферического носка до места стыка конуса с цилиндром, а второе – – сопротивление собственно сферического носка. Необходимо помнить, что характер влияния числа Маха на их величину различен (сравните влияние числа Маха на интенсивности прямого и косого скачков уплотнения).

Следует еще раз заметить, что волновое сопротивление для большинства конструкций вносит наибольший вклад в суммарную величину , особенно при малых и умеренных сверхзвуковых скоростях полета.

 

Рис. 5. Течение в донной области при сверхзвуковых скоростях

Донное сопротивление.Донное сопротивление обусловлено разрежением в донной области тела. Коэффициент донного сопротивления численно равен коэффициенту донного давления, взятому с противоположным знаком. Донное разрежение зависит от скорости полета, состояния поверхности тела, его длины, т.е. от состояния пограничного слоя в области донного среза и сужения кормовой части. Чем толще пограничный слой у донного среза (длинное тело или большая шероховатость), тем больше донное давление и меньше донное сопротивление. При сверхзвуковых скоростях с ростом числа разрежение в донной области тела увеличивается и при достаточно больших числах за дном возникает абсолютный вакуум (рис. 5).

Донное сопротивление для некоторых тел вращения может достигать 30% полного сопротивления. У тел вращения большого удлинения увеличение угла атаки до a » 5° практически не влияет на величину донного давления. Более подробно с донным сопротивлением можно ознакомиться в литературе, представленной в библиографическом списке.

Величину коэффициента донного сопротивления можно рассчитать по формуле:

,

где – относительная площадь донного среза.

Поправочный коэффициент , учитывающий отличие донного давления от абсолютного вакуума, зависит от числа и геометрических характеристик тела вращения и в общем случае рассчитывается по формуле

при k1£ 1, а при k1> 1 ,

где ( – удлинение корпуса ЛА).

При возрастании скорости полета и определенном сочетании параметров, входящих в формулу для расчета , расчетная схема предлагаемой программы расчета автоматически переходит от расчета величины по формуле, к постоянному значению . В этом случае на графике зависимостей или наблюдается нарушение плавности изменения коэффициента донного сопротивления.

 

Сопротивление трения.Проекцию главного вектора приложенных к ЛА касательных сил на направление невозмущенного потока называют сопротивлением трения. Наибольший вклад в сопротивление трения тел вращения дает его средняя цилиндрическая часть. Величина коэффициента сопротивления трения зависит от состояния пограничного слоя.

При сверхзвуковых скоростях полета длинного тела, ламинарный пограничный слой имеет место только в небольшой области, примыкающей к носовой оконечности тела, то есть практически на всей поверхности ЛА реализуется турбулентный режим течения. Место перехода пограничного слоя из одного состояния в другое может быть приближенно определено через отношение критического числа Рейнольдса к числу Рейнольдса в данной точке траектории ЛА. В расчетной схеме, принятой в программе расчета, за критическое число Рейнольдса принято значение .

Используя распространенный в аэродинамике прием, когда криволинейная внешняя поверхность реального ЛА заменяется плоской пластиной, эквивалентной по площади и той же протяженности по потоку, что и рассматриваемая поверхность тела вращения, расчетную формулу для определения сопротивления трения можно записать в виде:

,

где – коэффициент сопротивления трения плоской пластины в пограничном слое несжимаемой жидкости; – коэффициент, учитывающий отличие тела вращения от плоской пластины; – коэффициент, учитывающий сжимаемость среды; – относительная площадь боковой поверхности ЛА ( – полная площадь боковой поверхности и площадь миделевого сечения ).

При на поверхности ЛА существует смешанный пограничный слой. Поэтому среднее для ЛА значение местного коэффициента трения рассчитываем по следующей формуле:

,

в которой коэффициенты трения для ламинарного и турбулентного пограничных слоев определяются как:

, ;

Значение коэффициента зависит от удлинения тела вращения. Приведенная в книге [2] графическая зависимость аппроксимирована несколькими простейшими аналитическими формулами и использована в программе расчета. При расчете коэффициента также учитывается смешанный характер течения на поверхности ЛА:

,

где .

При имеет место чисто ламинарное обтекание всей поверхности ЛА, поэтому , .

Во всех расчетных формулах – число Рейнольдса, рассчитанное по параметрам атмосферы на заданной высоте

,

где – скорость звука на данной высоте; nн, Тн – кинематический коэффициент вязкости и температура воздуха на заданной высоте (определяются с помощью таблицы стандартной атмосферы [1], в программе расчета параметры стандартной атмосферы заданы в виде аналитических выражений); l – полная длина ЛА.

С увеличением высоты полета коэффициент кинематической вязкости n непрерывно возрастает ввиду опережающего влияния уменьшения плотности, что приводит к росту толщины пограничного слоя и к увеличению . При постоянной высоте полета с ростом числа М¥ коэффициент сопротивления трения убывает в связи с уменьшением толщины пограничного слоя.

Высота и скорость полета оказывают противоположное влияние на величины и скоростного напора . Поэтому при анализе их влияния на силу сопротивления трения следует учитывать интенсивность и направление (увеличение или уменьшение) изменения как , так и .

Число при увеличении H уменьшается и может стать даже меньше , то есть доля поверхности обтекаемой турбулентным пограничным слоем с ростом высоты полета уменьшается и на некоторой высоте пограничный слой на всей поверхности ЛА становится ламинарным. Характер влияния высоты полета на довольно сложный и необходимо быть особенно внимательным при анализе графиков, построенных для переменной высоты полета при одновременном увеличении скорости движения ЛА.