Потенциал электростатического поля. Работа, совершаемая силами электростатического поля при перемещении в нём электрического заряда

 

Работа , совершаемая кулоновскими силами при малом перемещении точечного заряда q в электростатическом поле:

,

где - напряжённость поля в месте нахождения заряда q. Работа кулоновской силы при перемещении заряда q из точки 1 в точку 2 не зависит от формы траектории движения заряда (т.е. кулоновские силы являются консервативными силами). Работа сил электростатического поля при перемещении заряда q вдоль любого замкнутого контура L равна нулю. Это можно записать в виде теоремы о циркуляции вектора напряженности электростатического поля.

Циркуляция вектора напряженности электростатического поля равна нулю:

 

.

Это соотношение, выражающее потенциальный характер электростатического поля, справедливо как в вакууме, так и в веществе.

Работа , совершаемая силами электростатического поля при малом перемещении точечного заряда q в электростатическом поле, равна убыли потенциальной энергии этого заряда в поле:

dА= - dWП и А12= - DWП = WП1 - WП2,

где WП1 и WП2 - значения потенциальной энергии заряда q в точках 1 и 2 поля. Энергетической характеристикой электростатического поля служит его потенциал.

Потенциалом электростатического поля называется скалярная физическая величина j, равная потенциальной энергии WП положительного единичного точечного заряда, помещённого в рассматриваемую точку поля, В.

.

Потенциал поля точечного заряда q в вакууме

.

Принцип суперпозиции для потенциала

,

т.е. при наложении электростатических полей их потенциалы складываются алгебраически.

 

Потенциал поля электрического диполя в точке С (рис. 1.2)

.

Если заряды распределены в пространстве непрерывно, то потенциал j их поля в вакууме:

.

Интегрирование проводится по всем зарядам, образующим рассматриваемую систему.

Работа А12, совершаемая силами электростатического поля при перемещении точечного заряда q из точки 1 поля (потенциал j1) в точку 2 (потенциал j2):

А12 = q (j1 - j2).

Если j2 = 0, то .

Потенциал какой-либо точки электростатического поля численно равен работе, совершаемой силами поля при перемещении положительного единичного заряда из данной точки в точку поля, где потенциал принят равным нулю.

При изучении электростатических полей в каких-либо точках важны разности, а не абсолютные значения потенциалов в этих точках. Поэтому выбор точки с нулевым потенциалом определяется только удобством решения данной задачи. Связь между потенциалом и напряжённостью имеет вид

Ех = , Еу = , Еz = и ,

т.е. напряжённость электростатического поля равна по модулю и противоположна по направлению градиенту потенциала.

Геометрическое место точек электростатического поля, в которых значения потенциалов одинаковы, называется эквипотенциальной поверхностью. Если вектор направлен по касательной к эквипотенциальной поверхности, то и . Это означает, что вектор напряженности перпендикулярен эквипотенциальной поверхности в каждой точке, т.е. E = En.