Быстрое преобразование Фурье (БПФ)
Дискретное преобразование Фурье преобразует набор чисел в набор чисел , такой, что , где и при .
Преобразование Фурье — операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.
Преобразование Фурье функции вещественной переменной является интегральным и задаётся следующей формулой:
Гармоническое колебание — явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:
или
,
где х — значение изменяющейся величины, t — время, остальные параметры — постоянные: А — амплитуда колебаний, ω — циклическая частота колебаний, — полная фаза колебаний, — начальная фаза колебаний.