Эллипс. Определение. Вывод канонического уравнения.
y M (x;y) F1 (-c;0) O F2 (c;0) x |
геометрическое место всех
точек плоскости, сумма
расстояний от которых до
до фокусов есть величина
постоянная, большая, чем расстояние между фокусами.
Пусть М (х;у) – произвольная точка эллипса.
Т.к. MF1 + MF2 = 2a
Т.к.
То получаем
Или
Гипербола. Определение. Вывод канонического уравнения.
Гиперболойназывается множество всех точек плоскости, модуль разности расстояний от каждой из которых до фокусов есть величина постоянная.
Пусть M(x;y) – произвольная точка гиперболы. Тогда согласно определению гиперболы |MF1 – MF2|=2a или MF1 – MF2=±2a,