А. Задачи на ряд распределения дискретной случайной величины
1. Вероятность попадания стрелка в первом выстреле равна 0.6, во втором – 0.9. Случайная величина Х – число попаданий в двух выстрелах.
Составить закон распределения для случайной величины.
2. Бросают три игральных кубика. Случайная величина Х – число выпавших троек.
Составить закон распределения для случайной величины.
3. В коробке лежат 3 красных шара, 5 белых и 4 черных шара. Наугад достают два шара. Случайная величина Х – число извлеченных белых шаров.
Составить закон распределения для случайной величины.
4. В коробке лежат 2 красных шара, 8 белых и 2 черных шара. Наугад достают два шара. Случайная величина Х – число извлеченных красных шаров
Составить закон распределения для случайной величины.
5. В связке из 3 ключей только один ключ подходит к двери. Ключи перебирают до тех пор, пока не отыщется подходящий ключ. Построить закон распределения для случайной величины x – числа опробованных ключей.
6. Пусть случайная величина ξ имеет следующий закон распределения
x | –1 | ||
P | 1/4 | 1/4 | 1/2 |
Вычислить для неё математическое ожидание, дисперсию и среднеквадратическое отклонение.
7. Пусть случайная величина ξ имеет следующий закон распределения
x | –1 | а | |
P | 1/4 | 1/4 | 1/2 |
При каком значении а математическое ожидание M(x) будет равно 2.