Термодинамический подход

Энтропия, функция состояния S термодинамической системы2, изменение которой dS для бесконечно малого обратимого изменения состояния системы равно отношению количества теплоты полученного системой в этом процессе (или отнятого от системы), к абсолютной температуре Т:

, (1)

.где dS – приращение энтропии; δQ3 – минимальная теплота, подведенная к системе; T – абсолютная температура процесса.

Величина dS является полным дифференциалом, т.е. ее интегрирование по любому произвольно выбранному пути дает разность между значениями энтропии в начальном (А) и конечном (В) состояниях:

. (2)

Теплота не является функцией состояния, поэтому интеграл от δQ зависит от выбранного пути перехода между состояниями А и В.

Энтропия измеряется в Дж/(моль·К).

Выражения (1) и (2) справедливы только для обратимых процессов.

Для необратимых процессов выполняется неравенство:

, (3)

из которого следует возрастания энтропии в этих процессах.

Свойства энтропии:

1. Энтропия - величина аддитивная, т.е. энтропия системы из нескольких тел является суммой энтропий каждого тела: S = ∑Si .

2. В равновесных процессах без передачи тепла энтропия не меняется. Поэтому равновесные адиабатические процессы (δQ = 0) называется изоэнтропийным.

3. Энтропия определяется только с точностью до произвольной постоянной.

Действительно, согласно формуле (2) измеренной является лишь разность энтропий в двух состояниях.

Абсолютное значение энтропии можно установить с помощью третьего начала термодинамики (теоремы Нернста): энтропия любого тела стремится к нулю при стремлении к абсолютному нулю его температуры: lim S = 0
при Т →
.

Т.о., за начальную точку отсчета энтропии принимают S0 = 0 при Т→ 0 К.

Энтропия – функция, устанавливающая связь между макро- и микро- состояниями; единственная функция в физике, которая показывает направленность процессов. Энтропия в естественных науках мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физике – мера вероятности осуществления какого-либо макроскопического состояния; в теории информации – мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит, и количество информации; в исторической науке, для экспликации феномена альтернативности истории (инвариантности и вариативности исторического процесса). Энтропия в информатике – степень неполноты, неопределённости знаний.

Понятие энтропии как показал впервые Э. Шрёдингер (1944), существенно и для понимания явлений жизни. Живой организм с точки зрения протекающих в нём физико-химических процессов можно рассматривать как сложную открытую систему, находящуюся в неравновесном, но стационарном состоянии. Для организмов характерна сбалансированность процессов, ведущих к росту энтропии и процессов обмена, уменьшающих её. Однако жизнь не сводится к простой совокупности физико-химических процессов, ей свойственны сложные процессы саморегулирования. Поэтому с помощью понятия энтропии нельзя охарактеризовать жизнедеятельность организмов в целом.