Длины высот треугольника равны 15, 21 и 35. Найти больший угол в градусах
Наверное тут просто сделать так. Пусть всего в треугольнике сумма углов 180 градусов.
Высоты относятся между с собой обратно пропорционально углам этого треугольника. То есть из вершины, которой проведена меньшая высота будет иметь больший угол.
ha=15
hb=21
hc=35
a,b,c стороны треугольника.
15a=21b=35c=2S
В конусе осевое сечение - правильный треугольник со стороной 2r. найти площадь сечения, проведенного через 2 образующие боковой поверхности, угол между которыми равен 30*.ответ:(r^2)
BC=2r
BD=2r
∠DBC=30o
S(BDC)=BC*BD*sin30/2 =2r*2r/4=r2
Высота конуса h, угол между высотой и образующей боковой поверхности равен 60*.найти площадь сечения, проведенного через 2 взаимно перпендикулярные образующие.ответ(2h^2)
Если вспомнить то против угла 30 градусов лежит сторона в два раза меньшая гипотенузы. Значит образующая OA=OB равна 2H.
Теперь по тому же принципу:
SBOA=2H*2H*sin90o/2=2H2