Объем прямоугольного параллелепипеда равен 2520 см(в кубе),а площадь основания 168 см(в квадрате),и длина на 2 см больше ширины. Найдите сумму длин всех ребер параллелепипеда.

 

Даже рисунок не понадобится, потому что решается устно.

Итак что такое объем параллелепипеда? Vпар=Sосн*H, где H одно из наших ребер и их всего 4. Покажу на рисунке позже.

H=2520/168=15 см.

Итак мы нашли одно ребро. осталось остальные два, которые получаются их основания.

Sосн=a*b; где a,b - стороны основания параллелепипеда.

Известно что a=b+2

Значит верным будет:

b*(b+2)=168

b2+2b-168=0

Решение квадратных уравнений, быстро и просто.

Ответ: b1 = 12; b2 = -14 (не может быть так как отрицательное)

Отсюда b=12; a=12+2=14

 

Теперь рисунок.

Для наглядности, я специально обозначил ребра равные a красным цветом. Ребра b зеленым, а высота H осталась черным.

Получается что всего в параллелепипеде по 4 каждого ребра. То есть логично записать что сумма будет равна:

P=4*(a+b+H)=4*(12+14+15)=41*4=164

 

 

Площадь основания пирамиды равна 108 дм2, а ее высота — 24 дм. Сечения пирамиды, параллельные плоскости основания, имеют площади 48 и 75 дм3. Найдите расстояние между плоскостями сечений.

Итак мы имеет пирамиду ABCS (нарисовал треугольную, потому что в этом задании нет разницы)

Начертим также два сечения DFE и D1F1E1 параллельные плоскости ABC.

Теперь мы видим что у нас получились подобные пирамиды. Давай разберем по порядку:

1) Пирамида DFES будет подобна пирамиде ABCS. Согласно правилу подобия площадей S(ΔABC)/S(ΔDFE)=k2

Найдя коэффициент подобия, мы сможем найти высоту пирамиды DFES.

108/48=2,25 → k=√(2,25)=1.5

Теперь вспомним, что высоты, стороны у подобных фигур в отношении получают k=h1/h2

Итак наша высота равна 24/h(DFES)=1.5 → h(DFES)=24/1.5=16

2) Точно также пирамида D1F1E1S подобна ABCS. Найдем ее высоту, таким же способом.

k=√(108/75)=1.2

24/h(D1F1E1S)=1.2 → h(D1F1E1S)=24/1.2=20

3) Нам нужно расстояние от плоскости DFE до D1F1E1. Оно будет равно 20-16=4 дм.

 

 

Основание пирамиды — равнобедренный треугольник с углом при вершине α и радиусом описанной окружности R. Две неравные боковые грани перпендикулярны плоскости основания, а третья грань наклонена к ней под углом β. Найдите боковую поверхность пирамиды.

На рисунке показана пирамида ABCS, из вершины S пр ведена апофема SK на AC равнобедренного треугольника при основании. Все это нам потребуется для решения данной задачи.

Итак радиус описаной окружности может быть найден как:

R=a/2sinα → CB=a=R*2sinα

Теперь зная сторону CB найдем остальные стороны AC и AB, которые равны между собой.

∠ABC=∠ACB=(180-α)/2

AC=AB=R*2sin[(π-α)/2]

Давай запишем какие площади составляют боковую поверхность:

Sбок.пов.=S(ΔACS)+S(ΔBCS)+S(ΔABS)

Теперь нужно расписать как найти каждую из них.

S(ΔACS)=SK*AC

S(ΔBCS)=AB*BS/2

S(ΔABS)=CB*BS/2

В правильной треугольной пирамиде отрезок, соединяющий основание высоты пирамиды с серединой апофемы, равен m и образует с высотой пирамиды, угол β. Найдите полную поверхность пирамиды.

На рисунке изображена пирамида ACBO, OM-высота, OK-Апофема.

Точка L середина апофемы OK, LM образует с высотой OM угол β.

ΔOMK прямоугольный, следовательно ML является медианой этого треугольника, значит OL = LM = LK = m

OK=2m

ΔOLM равнобедренный, следовательно ∠OML = ∠LOM, а это значит что апофема образует с высотой угол β (на рисунке показано).

Sосн=3*r2*√(3)

Sбок=p•a/2; где p - полупериметр основания, a - апофема OK.

В основании нашей пирамиды лежит правильный треугольник, стороны которого равны. Найдем сторону основания, для этого воспользуемся уже имеющимися данными. Как известно MK является радиусом вписанной в основание окружности.

r=AB*√(3)/6 → AB=6r/√(3)

Найдем чему равен r, зная что sinβ=MK/OK →OK=MK/sinβ=2m/sinβ

Sосн=(2m/sinβ)2*3*√(3)

AB=6*2m/sinβ*√(3)=12m/sinβ*√(3)

p=3*12m/sinβ*√(3)=36m/sinβ*√(3)

Sбок=36m*2m/sinβ*√(3)

Sполн=[72m2/sinβ*√(3)]+(2m/sinβ)2*3*√(3)