Резонанс в последовательной цепи (резонанс напряжений)
Под резонансом в электрической цепи понимают такое ее состояние, когда ток и напряжение совпадают по фазе и вся цепь ведет себя как чисто активная (рис. 1.18).
Рис. 1.18. Резонансная цепь (а) и векторная диаграмма при резонансе (б)
(из определения резонанса);
(условие резонанса напряжений);
;
;
Если то , т.е. напряжение на реактивных элементах цепи может быть больше напряжения, подводимого ко всей цепи.
,
,
т.е. цепь из сети реактивную мощность не потребляет и в сеть её не отдает;
;
.
В момент резонанса происходит обмен энергии между L и C. Из сети реактивная мощность не потребляется и в сеть не отдается, следовательно, цепь ведет себя как чисто активная.
35. Резонанс токов возникает в цепях переменного тока состоящих из источника колебаний и параллельного колебательного контура. Резонанс тока это увеличение тока проходящего через элементы контура при этом увеличение потребление тока от источника не происходит.
Рисунок 1 — параллельный колебательный контур
Для возникновения резонанса токов необходимо чтобы реактивные сопротивления емкости и индуктивности контура были равны. А также частота собственных колебаний контура была равна частоте колебаний источника тока.
Во время наступления резонанса токов или так называемого параллельного резонанса напряжение на элементах контура остается неизменным и равным напряжению, которое создает источник. Поскольку он подключен параллельно контуру. Потребление тока от источника будет минимально, так как сопротивление контура при наступлении резонанса резко увеличится.
Рисунок 2 — зависимость полного сопротивления контура и тока от частоты
Сопротивление колебательного контура относительно источника колебаний будет иметь чисто активный характер. То есть не будет, провялятся ни емкостная, ни индуктивная составляющая. И сдвиг фаз между током и напряжением будет отсутствовать.
В тоже время ток через индуктивность будет отставать от напряжения на 90 градусов. А ток в емкости буде опережать напряжение на те же 90 градусов. Таким образом, токи в реактивных элементах контура будут сдвинуты по фазе на 180 градусов друг относительно друга.
В итоге получается, что в параллельном колебательном контуре протекают реактивные токи достаточно большой величины, но при этом он от источника напряжения потребляет малый ток необходимый лишь для компенсации потерь в контуре. Эти потери обусловлены наличием активного сопротивления сосредоточенного по большей части в индуктивности.
Источник затрачивает энергию при включении, заряжая емкость. Далее энергия, накопленная в электрическом поле конденсатора, переходит в энергию магнитного поля индуктивности. Индуктивность возвращает энергию емкости, и процесс повторяется снова. Источник напряжения лишь должен компенсировать потери энергии в активном сопротивлении контура.
31.
1. Метод контурных токов используется обычным способом, однако, к напряжениям самоиндукции на катушках добавляем напряжения взаимной индукции (типа ). Контурные токи желательно выбирать так, чтобы на каждую катушку приходился свой контурный ток.
а. Пример
Примечание: Перед М берем "-", так как имеем встречное включение
б. Пример |
Примечание: Перед М берем "+", так как имеем согласное включение
2. Развязка индуктивных связей используется для замены индуктивно связанных катушек с одним общим зажимом на три обычных индуктивности.
Примечание: При другом расположении одноименных зажимов следует поменять всюду знак перед М.
3. Использование вместо реальных трансформаторов эквивалентных схем с идеальными трансформаторами часто упрощает расчет.
28 В электротехнике и электронике широко используются устройства, которые содержат индуктивные катушки, связанные общими магнитными потоками. Примером такого устройства является трансформатор, который служит для преобразования уровней переменных напряжений и токов и для согласования сопротивлений отдельных участков цепи.
Физическая картина заключалась в следующем: переменный ток , протекая по виткам катушки (рис. 8.1, а) создает переменный магнитный поток , который сцепляясь с витками катушки, обуславливает появление ЭДС самоиндукции eL, противодействующей по закону Ленца изменению потокосцепления , то есть
,
где - индуктивность, численно равная отношению потокосцепления самоиндукции к току, его обуславливающему.
Теперь рассмотрим явление взаимоиндукции, то есть явление наведения ЭДС в одной электрической цепи при изменении в ней потокосцепления, вызванного изменением тока в другой электрической цепи. Для этого проанализируем картину магнитного поля индуктивно-связанных катушек (рис. 8.1,б).
Рис.8.1 - К определению индуктивно связанных цепей
Связь магнитных потоков катушек обусловливает их индуктивную связь. Взаимно индуктивная связь проявляется в наведении ЭДС (называемой ЭДС взаимоиндукции) в одной катушке при изменении тока в другой близко расположенной катушке.
Цепи, в которых наводятся ЭДС взаимоиндукции, называют индуктивно связанными цепями.
Рассмотрим цепь, состоящую из двух индуктивных катушек, намотан-ных на общий сердечник (рисунок 8.2). На схеме обозначено: L1, R1 и L2, R2 – индуктивности и активные сопротивления первой и второй катушек; М – взаимная индуктивность.
Рисунок 8.2 ‑ Схема замещения двух, индуктивно связанных,
катушек
Взаимная индуктивность M зависит от индуктивностей обоих контуров и их взаимного расположения, поэтому при некоторой ориентации даже близко расположенных контуров взаимная индуктивность может быть равной нулю. Единица измерения взаимной индуктивности и индуктивности одинакова − генри.
Каждая из катушек пронизывается двумя магнитными потоками: потоком самоиндукции, вызванным собственным током, и потоком взаимоиндукции, вызванным током другой катушки.
В соответствии с принципом наложения потокосцепление первой катушки
(8.1)
Потокосцепление второй катушки
(8.2)
Значения взаимной индуктивности М в выражениях (8.1) и (8.2) одинаковы и не могут превышать среднего геометрического из значений и :L1 и L2:
где k – коэффициент связи, характеризующий магнитную связь между катушками. Его величина равна отношению взаимной индуктивности и среднего геометрического значения индуктивностей обеих катушек:
где XL1 и XL2 – индуктивные сопротивления катушек.
В пределе, когда магнитный поток одной катушки полностью пронизывает витки другой, k=1. При отсутствии магнитной связи k=0.
Знаки слагаемых в (8.1) и (8.2) зависят от взаимного направления магнитных потоков катушек. В свою очередь, направления магнитных потоков зависят как от направления токов в катушках, так и от их взаимного расположения.
Если катушки включены таким образом, что потоки складываются, то такое включение называют согласным. Если магнитные потоки направлены навстречу друг другу, то катушки включены встречно.
При согласном направлении токов в двух индуктивно связанных ка-тушках зажимы этих катушек, относительно которых токи направлены одинаково, называютодноименными. Одноименные зажимы принято обозначать точками или звездочками.
Физически направления магнитных потоков в катушках определяется правилом правоходового винта. Например, потоки Фм1 и Фм2 на рис. 8.3,а направлены противоположно при заданных направлениях токов i 1 и i 2 , т.е. катушки включены встречно. Однако, если бы эти токи были ориентированы одинаково относительно зажимов соответственно 1 и 4, то потоки были бы направлены одинаково. Следовательно, эти зажимы можно считать одноименными.
Рисунок 8.3 - Встречное включение катушек
На рис. 8.3,б изображена эл. схема, соответствующая рисунку 8.3,а, где
наличие индуктивной связи между катушками показано дугой с стрелками, над которой стоит символ "М", а одноименные зажимы помечены символами (*).
Определим напряжения на зажимах индуктивно связанных катушек на основе второго закона Кирхгофа:
(8.3)
(8.4)
Основной формой расчета цепей синусоидального тока является метод комплексных амплитуд. Рассмотрим применение этого метода для расчета индуктивно связанных цепей. Пусть цепь на рисунке 8.1 находится в режиме гармонических колебаний. Запишем уравнения (8.3), (8.4) в комплексной форме:
; (8.5)
, (8.6)
где - комплекс сопротивления взаимоиндукции; знак плюс (+М) ставят при согласном включении катушек; знак минус (-М) - при их встречном включении.