Слишком хорошо, чтобы быть правдой

 

Третье важнейшее достижение, полученное при помощи нашего нового «молотка» – геометрического анализа, – относится к гипотезе, выдвинутой в 1953 году Эудженио Калаби, математиком, с 1964 года работающим в Пенсильванском университете. Эта гипотеза, как будет показано далее, стала ключевой в обсуждаемой области и оказала огромнейшее влияние на всю мою дальнейшую научную карьеру. Я считаю своей особенной удачей то, что мне довелось наткнуться на идеи Калаби, точнее, налететь на них лбом – тогда еще не было принято носить шлемы. Конечно, каждый математик, достаточно талантливый и подготовленный, с большой вероятностью внесет определенный вклад в исследуемую им область, однако чтобы найти задачу, специально предназначенную для твоего таланта и образа мыслей, необходимо иметь еще и особое везение. В математике мне везло не один раз, но столкновение с гипотезой Калаби в этом отношении для меня является удачей из удач.

Задача имеет форму теоремы, связывающей топологию комплексных пространств , о которых мы поговорим далее, с их геометрией, или кривизной. Основная идея состоит в следующем. Возьмем некое необработанное топологическое пространство, представляющее собой что‑то вроде пустого участка земли, специально расчищенного для предстоящего строительства. Соорудим на нем некую геометрическую структуру, которую впоследствии можно еще и декорировать различными способами. Вопрос, который задал Калаби, хотя и содержит некоторые оригинальные идеи, тем не менее принадлежит к тому типу вопросов, которые очень часто ставятся геометрами, а именно: какие из строго определенных геометрических структур допустимы для заданной топологии или, грубо говоря, для заданной формы объекта?

Рис. 4.1. Геометр Эудженио Калаби (фотография Дирка Феруса)

 

Ответ на этот вопрос едва ли покажется кому‑либо имеющим важное значение для физики. Но посмотрим на него с другой стороны. Гипотеза Калаби касается пространств, имеющих особый тип кривизны, известный как кривизна Риччи, которая вкратце будет описана позже. Как оказалось, кривизна Риччи определенного пространства напрямую зависит от распределения материи в этом пространстве. Пространство, называемое риччи‑плоским – кривизна Риччи которого равна нулю, – представляет собой пространство, материя в котором отсутствует. Рассматривая поставленный Калаби вопрос с этой точки зрения, можно увидеть его непосредственную взаимосвязь с общей теорией относительности Эйнштейна: возможно ли существование гравитации во Вселенной, представляющей собой полностью лишенный материи вакуум? Если Калаби прав, то кривизна делает возможной гравитацию даже при отсутствии материи. Калаби сформулировал эту задачу в еще более общей форме, поскольку его гипотеза относилась к пространствам любой возможной размерности, а не только к четырехмерным, лежащим в основе общей теории относительности. Такая формулировка казалась мне наиболее правильной, так как она полностью согласовывалась с моим убеждением о том, что самые глубокие математические идеи в случае их истинности всегда находят применение в физике и должны проявлять себя в природе вообще.

Калаби утверждает, что, когда эта гипотеза впервые пришла ему в голову, «она совершенно не была связана с физическими представлениями. Это была чистая геометрия»[42]. Я не сомневаюсь в истинности его слов. Это утверждение могло бы быть точно так же сформулировано, даже если бы Эйнштейну никогда не приходила в голову идея общей теории относительности. И доказательство этой гипотезы могло бы быть получено, даже если бы теории Эйнштейна не существовало. Впрочем, я уверен, что в то время, когда Калаби сформулировал свою задачу – почти через сорок лет после публикации Эйнштейном его революционных статей, – теория Эйнштейна была уже широко распространена. Едва ли найдется хотя бы один математик, который никогда не размышлял над физическими идеями Эйнштейна, пусть даже без какой‑либо определенной цели. К тому времени уравнения Эйнштейна прочно связали искривление пространства и гравитацию, глубоко пустив корни в математику. Можно сказать, что общая теория относительности стала частью коллективного сознания или, наоборот, «коллективного бессознательного», – как сказал бы Юнг.

Безотносительно к тому, сознательно или бессознательно Калаби затрагивал физические проблемы, связь между его гипотезой и вопросами гравитации стала для меня важнейшим побудительным фактором, чтобы приняться за эту работу. Я понял, что доказательство гипотезы Калаби может стать важным шагом на пути к раскрытию какой‑то глубокой тайны.

Вопросы, подобные тому, который поставил Калаби, часто формулируют в терминах метрики или геометрии пространства – набора функций, который позволяет определить длину любой траектории в соответствующем пространстве, – с этим понятием мы впервые столкнулись в первой главе. Всякое топологическое пространство способно принимать множество различных форм и, следовательно, обладать множеством всевозможных метрик. Одно и то же топологическое пространство может иметь форму куба, сферы, пирамиды или тетраэдра – геометрических тел, эквивалентных с топологической точки зрения. Вопрос, который затрагивает гипотеза Калаби, относящийся к разновидностям метрики, допустимым в данном пространстве, может быть переформулирован следующим эквивалентным образом: какие из геометрических форм возможны для пространств данной топологии?

Конечно, Калаби не использовал в точности такие термины, когда выдвигал свою гипотезу. Его цель состояла в том, чтобы узнать, будет ли определенный вид комплексного многообразия, а именно пространство, являющееся компактным, то есть имеющим ограниченную протяженность, и «кэлеровым» – удовлетворяющим определенным топологическим условиям (имеющим определенную характеристику, известную как «обращение в нуль первого класса Черна»), – иметь риччи‑плоскую метрику. Нужно признать, что все ключевые составляющие данной гипотезы весьма сложны для непосредственного восприятия, поэтому определение всех понятий, необходимых для понимания утверждения Калаби, таких как комплексные многообразия, геометрия и метрика Кэлера, первый класс Черна и кривизна Риччи, – потребует определенных усилий.

На протяжении данной главы всем этим понятиям будет дано объяснение. При этом основной идеей гипотезы является возможность – с математической и геометрической точек зрения – существования пространств, удовлетворяющих всему этому сложному набору требований.

Мне кажется, что такие пространства столь же редки, как алмазы, и гипотеза Калаби предоставляет карту, позволяющую их обнаружить. Зная, как решить уравнение для одного из многообразий и понимая общую структуру этого уравнения, при помощи той же идеи можно решить соответствующие уравнения для всех кэлеровых многообразий, удовлетворяющих заданным требованиям. Гипотеза Калаби предлагает существование общего правила, указывающего нам на то, что «алмазы» находятся именно в данном месте – или, иными словами, на то, что та метрика, которую мы ищем, существует. Даже если пока мы не способны увидеть ее во всей красе – мы не сомневаемся в том, что она действительно существует. Среди всех математических теорий эта казалась мне скрытым сокровищем – чем‑то сродни неограненному алмазу.

Из этой идеи зародилась та работа, благодаря которой я получил сегодняшнюю известность. Можно сказать, что именно в этой работе я нашел свое истинное призвание. Вне зависимости оттого, в какой области мы работаем, мы все стремимся найти наше собственное призвание в жизни – то особое, для которого мы появились на этой земле. Для актера таким призванием может стать роль Стэнли Ковальски в пьесе Теннесси Уильямса «Трамвай “Желание”». Или заглавная роль в «Гамлете». Для пожарного это может быть победа над пожаром десятой категории сложности. Для криминалиста – поимка Врага Общества Номер Один. Ну а в математике найти свое призвание – значит найти ту задачу, работа над которой была предопределена тебе самой судьбой. Хотя, возможно, дело тут и не в судьбе. Может быть, достаточно просто наткнуться на задачу, которую ты можешь успешно решить.

Говоря откровенно, выбирая задачу для дальнейшей работы, я никогда особо не задумываюсь о том, какую роль в моей дальнейшей судьбе она может сыграть, напротив, в этих вопросах я стараюсь быть как можно более прагматичным. Моей целью является поиск новых направлений в математике, способных породить новые, неизвестные математические задачи, многие из которых и сами по себе будут интересны. Может оказаться и так, что меня заинтересует уже существующая проблема, если мне покажется, что ее решение может значительно раздвинуть горизонты той или иной области.

Гипотеза Калаби, известная к тому времени уже пару десятилетий, подходила именно под вторую категорию. Я обратил внимание на эту задачу на первом курсе аспирантуры, хотя порой мне казалось, что на самом деле это задача обратила на меня внимание. Ни одна из задач до того так не захватывала меня, как эта, поскольку я чувствовал, что ее решение может открыть дверь в совершенно новую область математики. Гипотеза Калаби отчасти затрагивала классическую проблему Пуанкаре, однако казалась мне более общей, так как из предположения Калаби следовало не только существование нового большого класса математических поверхностей и пространств, о которых до этого ничего не было известно, но и, возможно, она вела к новому пониманию пространства и времени. Для меня эта встреча с этой гипотезой была практически неизбежной: почти все дороги, по которым я двигался в своих первых исследованиях кривизны, неминуемо вели к ней.

Прежде чем приступить непосредственно к обсуждению доказательства данной гипотезы, необходимо для начала разобраться с упоминавшимися ранее понятиями, лежащими в ее основе. Гипотеза Калаби относится только к комплексным многообразиям. Понятие многообразия, как я уже говорил, аналогично понятию поверхности или пространства, но, в отличие от хорошо знакомых нам двухмерных поверхностей, многообразия могут иметь любую четную размерность, не обязательно равную двум. Ограничение по поводу четного значения размерности относится только к комплексным многообразиям, в общем случае многообразие может иметь как четную, так и нечетную размерность. По определению многообразия на малых или локальных участках имеют сходство с евклидовыми пространствами, но в больших, или так называемых глобальных , масштабах они демонстрируют заметное отличие. Так, к примеру, окружность представляет собой одномерное многообразие, и окрестность каждой из лежащей на ней точек можно уподобить отрезку прямой. Но в целом окружность совершенно не похожа на прямую линию. Теперь добавим еще одно измерение. Мы живем на поверхности сферы, которая представляет собой двухмерное многообразие. Взглянув на достаточно малый участок земной поверхности, можно обнаружить, что он имеет практически идеально плоскую форму как диск или фрагмент плоскости, несмотря на то что в целом эта поверхность искривлена и, следовательно, неевклидова. Если теперь выбрать на поверхности участок значительно большего размера, то отклонение от евклидовости станет очевидным, что приведет к необходимости сделать поправки на кривизну.

Одной из важных особенностей многообразий является их гладкость . Это свойство прямо вытекает из их определения, поскольку из сходства каждого малого участка поверхности с евклидовым пространством напрямую следует гладкость поверхности во всех точках. Геометры говорят о гладкости многообразия даже в том случае, если оно имеет некоторое количество «странных» точек, в которых условие локальной евклидовости не выполняется – например, точка пересечения двух линий. Такие точки носят название топологических сингулярностей , поскольку их в принципе невозможно сгладить. Вне зависимости то того, насколько мала выбранная вокруг такой точки окрестность, пересечение все равно останется пересечением.

Подобные вещи постоянно встречаются в римановой геометрии. В начале преобразования объект может быть гладким и простым для исследований, но стоит нам приблизиться к определенному пределу – скажем, постепенно заостряя его форму или срезая углы, – и возникновение сингулярности станет неизбежным. Впрочем, геометры обычно столь либеральны в этом вопросе, что даже пространство, имеющее бесконечно большое число сингулярностей, в их глазах все равно остается многообразием – в этом случае они называют его сингулярным пространством , или сингулярным многообразием , и рассматривают как предельную форму гладкого многообразия. При этом вместо двух линий, пересекающихся в одной точке, чаще рассматривают плоскости, результатом пересечения которых будет линия.

Это и есть грубое определение понятия многообразия. Теперь что касается слова «комплексное». Комплексным называется такое многообразие, каждой точке которого можно сопоставить определенное комплексное число. Подобное число имеет вид a + ib , где а и b – действительные числа, a i – так называемая мнимая единица, определяемая как квадратный корень из ‑1. Как и координаты точки на плоскости, которые можно изобразить на графике с двумя осями x и y , одномерные комплексные числа можно изобразить на графике с двумя осями, соответствующими вещественной и мнимой частям.

Комплексные числа полезны по нескольким причинам – прежде всего потому, что они дают возможность извлекать квадратные корни из отрицательных чисел. При помощи комплексных чисел можно решить квадратное уравнение вида ax2 + bx + c = 0 при помощи формулы, которую многие из вас учили в средней школе x = (‑b ± √(b2‑4ac))/2a вне зависимости от того, какое значение имеют величины a , b и c . После того как комплексные числа введены, уже не нужно ломать руки в отчаянии, если дискриминант b2‑4ac вдруг окажется отрицательным; несмотря на это, уравнение все равно будет иметь решение.

Комплексные числа важны, а иногда просто незаменимы для решения полиномиальных уравнений, содержащих одну или несколько переменных и постоянных. Задача, как правило, состоит в нахождении корней уравнения – точек, в которых значение полинома обращается в нуль. Если бы комплексных чисел не существовало, многие из подобных задач не имели бы решения. Наиболее простым примером является уравнение x2 + 1 = 0 , не имеющее вещественных корней. Данное равенство будет верным, то есть полином обратится в нуль, только в случае когда x = i или x = ‑i .

Кроме того, комплексные числа важны для понимания волновых процессов, поскольку комплексная амплитуда содержит информацию не только об амплитуде, но и о фазе волны. Две волны, имеющие одинаковую амплитуду и частоту, могут либо совпадать по фазе, и тогда волны накладываются друг на друга и результирующая волна будет равна их сумме, либо не совпадать – и тогда волны частично или полностью погасят друг друга. Если фаза и амплитуда волны выражены при помощи комплексного числа, то сложение двух волн сводится к сложению или умножению двух комплексных чисел. Выполнить этот расчет без привлечения комплексных чисел также возможно, но он будет намного сложнее, точно так же, как расчет движения планет в Солнечной системе можно произвести и в геоцентрической системе, но уравнения будут проще и изящнее, если поставить в центр физической картины Солнце, роль комплексных чисел в описании волновых процессов сделала их незаменимыми для физики. Так, в квантовой механике каждая элементарная частица может быть представлена в виде соответствующей волны. Квантовая механика в свою очередь является ключевым компонентом разнообразных теорий квантовой гравитации, претендующих на роль так называемых «теорий всего». С этой точки зрения возможность описывать волны при помощи комплексных чисел является заметным преимуществом.

Впервые комплексные числа были задействованы для вычислений в книге итальянского математика Джероламо Кардано, опубликованной в 1545 году. Однако роль комплексной геометрии как значимой дисциплины была признана только спустя три столетия. Человеком, который вывел комплексную геометрию на передний план математики, стал Георг Фридрих Бернхард Риман – архитектор первых подробно исследованных комплексных многообразий – так называемых римановых поверхностей . Эти поверхности приобретут особую важность в теории струн, созданной почти через сто лет после смерти Римана. Когда крошечная замкнутая струна , являющаяся основным элементом теории струн, движется в многомерном пространстве‑времени, поверхность, которую она заметает за собой, является римановой. Использование таких поверхностей для расчетов в рамках теории струн сделало их одними из наиболее исследованных поверхностей в современной теоретической физике. Теория римановых поверхностей существенно обогатилась от сотрудничества с теорией струн, поскольку полученные из физического описания уравнения весьма укрепили ее математическую часть.

Римановы поверхности, подобно обычным двухмерным многообразиям, являются гладкими, но из их комплексной природы – они являются одномерными комплексными многообразиями – следует наличие у них дополнительной встроенной структуры. Одна особенность, автоматически следующая из комплексной природы поверхности, но не всегда присущая действительным поверхностям, состоит в том, что все окрестности поверхности связаны друг с другом определенным образом. Спроецировав небольшой фрагмент искривленной римановой поверхности на плоскость и затем проделав ту же операцию для всех окружающих его фрагментов, можно получить карту, похожую на ту, которая получается при изображении трехмерного глобуса в двухмерном географическом атласе мира. Если сделать подобную карту на основе римановой поверхности, то расстояния между различными объектами на этой карте будут искажены, однако углы между ними сохранятся. Та же идея – сохранение углов за счет искажения расстояний – использовалась и на появившихся в XVI столетии картах, основанных на проекции Меркатора, которые представляли земную поверхность не в виде сферы, а в виде цилиндра. Сохранение углов при так называемом конформном отображении земного шара на карте в те времена было необходимо для целей навигации и помогало капитанам кораблей держать выбранный курс. Использование конформного отображения существенно упрощает расчеты, относящиеся к римановым поверхностям, делая возможным для таких поверхностей доказательство многих утверждений, недоказуемых для поверхностей, не являющихся комплексными. Наконец, римановы поверхности, в отличие от обычных многообразий, должны быть ориентируемыми, а это означает, что способ определения направлений – ориентация системы координат – не зависит от местоположения точки на поверхности. Противоположная ситуация имеет место для ленты Мёбиуса – классического примера неориентируемой поверхности, в процессе перемещения по которой направления могут меняться местами – низ становится верхом, левое – правым, направление по часовой стрелке переходит в направление против часовой стрелки.

Переход от одного участка римановой поверхности к другому приводит к изменению системы координат, и только небольшая окрестность каждой из заданных точек имеет вид евклидового пространства. Эти небольшие участки нужно сшить вместе так, чтобы переход от одного из них к другому не приводил к изменению углов. Именно это и имеют в виду, когда называют подобные переходы, или «преобразования», конформными . Конечно, комплексные многообразия возникают и в измерениях с более высокой размерностью – римановы поверхности представляют собой только их одномерный вариант. Но вне зависимости от размерности, чтобы получить комплексное многообразие, необходимо должным образом соединить различные его участки или фрагменты. При этом для многообразий более высокой размерности в процессе перехода от одного участка к другому и от одной системы координат к другой углы не сохраняются. Строго говоря, такие преобразования уже не являются конформными, но представляют собой скорее обобщение одномерного случая.

Рис. 4.2. Все эти двухмерные поверхности – бык, кролик, Давид и лошадь – являются примерами римановых поверхностей, имеющих огромную важность в математике и теории струн. Можно нанести на эти поверхности узор в виде шахматной доски, выбирая точки на шахматной доске, подставляя их координаты в некую функцию и получая в результате точку на поверхности, например кролика. Однако полученная в результате шахматная доска не будет идеальной, если только ее не отобразили на поверхность двухмерного тора, по причине присутствия на ней сингулярных точек, таких как северный и южный полюсы сферы, которые неизбежно возникают на поверхностях, эйлеровы характеристики которых (понятие эйлеровой характеристики будет подробно описано далее) не равны нулю. При этом, однако, процесс отображения является конформным , то есть углы – в том числе и прямые углы шахматной доски – при переходе от одной поверхности к другой всегда сохраняются. Несмотря на то что размеры объектов, таких как клетки шахматной доски, могут в результате оказаться искаженными, углы клеток все равно будут составлять ровно 90 градусов. Это свойство сохранения углов является одной из характерных особенностей римановых поверхностей

 

Пространства, которые представил себе Калаби, были не только комплексными, но также имели особое свойство, называемое кэлеровой метрикой . Римановы поверхности являются кэлеровым автоматически, поэтому данное понятие обретает смысл только для комплексных многообразий двух и более комплексных измерений. В кэлеровом многообразии пространство имеет вид евклидового в определенной точке и остается близким к нему при небольшом смещении, хотя и отклоняется от евклидовости определенным образом. Для того чтобы пояснить последнее утверждение, необходимо отметить, что это многообразие имеет вид не привычного плоского евклидового пространства, а так называемого «комплексного евклидового пространства», то есть оно имеет четную размерность и некоторые из координат, определяющие положение точек на данном многообразии, являются комплексными числами. Этот отличительный признак очень важен, поскольку только комплексные многообразия могут иметь кэлерову метрику. Данная метрика в свою очередь дает нам возможность помимо всего прочего измерять расстояния при помощи комплексных чисел. Условие Кэлера, названное в честь немецкого математика Эриха Кэлера, показывает степень близости заданного пространства к евклидовому на основании критериев, не связанных непосредственно с его кривизной.

Для того чтобы количественно оценить степень близости определенного многообразия к евклидовому пространству, необходимо знать его метрику. В плоском пространстве с взаимно перпендикулярными координатными осями для расчета расстояний можно использовать теорему Пифагора. В искривленных пространствах дело обстоит несколько сложнее, поскольку оси координат в этом случае могут уже не быть взаимно перпендикулярными, что приводит к необходимости использования модифицированной версии теоремы Пифагора. Для расчета расстояний в искривленных пространствах необходимо знать метрические коэффициенты – набор чисел, изменяющийся от точки к точке и зависящий от ориентации координатных осей. Выбор той или иной ориентации осей ведет к возникновению разных наборов метрических коэффициентов. При этом значение имеют не столько величины этих коэффициентов, которые во многом произвольны, сколько характер их изменения при переходе от одной точки многообразия к другой. Это дает возможность узнать положение различных точек по отношению друг к другу и таким образом свести воедино все, что касается геометрии данного многообразия. Как уже было сказано в предыдущих главах, для описания четырехмерного пространства необходимы десять метрических коэффициентов. На самом деле коэффициентов всего шестнадцать, поскольку метрический тензор в данном случае представляет собой матрицу 4×4. Однако метрический тензор всегда симметричен относительно диагонали, проходящей из левого верхнего угла матрицы в правый нижний. Таким образом, четыре числа лежат непосредственно на диагонали матрицы и еще два одинаковых набора из шести чисел каждый лежат по разные стороны от нее. За счет наличия симметрии вместо шестнадцати чисел можно рассматривать только десять: четыре на диагонали и шесть – по одну сторону от нее.

Это, впрочем, еще не объясняет механизм работы метрики. Рассмотрим весьма простой пример, имеющий место для одного комплексного или двух вещественных измерений, – метрику Пуанкаре единичного круга, центр которого находится в точке плоскости с координатами (0, 0). Этот круг представляет собой набор точек (x , y ), удовлетворяющих неравенству x2 + y2 < 1 . Формально такой круг называют «открытым», поскольку он не включает в себя свою границу – окружность, определяемую выражением x2 + y2 = 1 . Поскольку рассматриваемый случай относится к двум измерениям, тензор метрики Пуанкаре представляет собой матрицу 2×2. В каждой из ячеек этой матрицы стоит коэффициент вида Gij , где i – номер строки, j – номер столбца. Таким образом, матрица будет иметь вид:

 

G11 G12

G21 G22

 

За счет симметрии, о которой шла речь выше, G12 будет равно G21 . Для метрики Пуанкаре эти два «недиагональных» элемента по определению равны нулю. Равенство двух других элементов – G11 и G22 не обязательно, но в случае метрики Пуанкаре оно имеет место: оба эти элемента по определению равны 4/(1‑x2‑y2)2. Любой паре координат x и y , выбранной внутри единичного круга, метрический тензор ставит в соответствие определенный набор коэффициентов. Так, например, для x = 1/2 и y = 1/2 элементы G11 и G22 будут оба равны 16, оставшиеся же два коэффициента равны нулю для любой точки единичного круга.

Что же делать дальше с полученными числами? И как эти коэффициенты соотносятся с расстоянием? Нарисуем внутри единичного круга небольшую кривую, однако рассмотрим ее не как неподвижный объект, а как траекторию частицы, движущейся из точки А в точку В. Чему же равна длина этой траектории для данной метрики Пуанкаре?

Для того чтобы ответить на этот вопрос, рассмотрим кривую s и разделим ее на крошечные линейные участки – настолько крошечные, насколько это только можно представить, – и сложим их длины между собой. Длину каждого из линейных участков можно найти при помощи теоремы Пифагора. Для начала определим величины x , y и s параметрически, то есть представим их как функции времени: x = X(t) , y = Y(t) и s = S(t) . Производные этих функций – X'(t) и Y'(t ) – можно рассматривать как катеты прямоугольного треугольника; их подстановка в теорему Пифагора √([X'(t)]2+[Y'(t)]2) дает значение производной S'(t). Интегрирование от А до В позволяет определить длину всей кривой. В свою очередь каждый линейный сегмент представляет собой касательную к кривой, называемую в данном случае касательным вектором. Однако поскольку кривая находится на круге Пуанкаре, то перед интегрированием полученный результат нужно умножить на значение метрики √([X'(t)]2+[Y'(t)]2)×√(4/(1‑x2‑y2)2) , чтобы ввести поправку на кривизну.

Для дальнейшего упрощения полученной картины приравняем Y(t ) к нулю и таким образом ограничимся осью x . Затем начнем движение с постоянной скоростью вдоль оси x из точки 0 в точку 1. Если время также будет изменяться от 0 до 1, то уравнение движения будет иметь вид X(t) = t , и при Y(t) = 0 , что предполагалось изначально, производная X'(t) = 1, поскольку производная от X в данном случае берется по отношению ко времени, а значение X всегда равно значению времени. Если представить производную в виде отношения, то последнее уравнение станет очевидным: в этом примере производная по X – это отношение изменения переменной X к изменению переменной X , а любое отношение такого вида – с одинаковым числителем и знаменателем – всегда равно 1.

Таким образом, пугающее своим видом выражение, полученное двумя абзацами выше, которое необходимо было каким‑то образом проинтегрировать, чтобы получить из него длину, свелось к выражению 2/(1 – x2). Нетрудно заметить, что когда x стремится к единице, это отношение стремится к бесконечности, и точно так же стремится к бесконечности, или, как говорят математики, расходится , и его интеграл.

Важно отметить, что из стремления к бесконечности метрических коэффициентов – в данном случае G11 и G22 – еще не следует, что расстояние до границы также стремится к бесконечности. Но именно это имеет место в случае метрики Пуанкаре на единичном круге. Рассмотрим внимательнее, что происходит с этими значениями при движении в направлении от центра круга с течением времени. В начальной точке, где x = 0 и y = 0 , оба коэффициента, G11 и G22 равны 4. Однако при приближении к границе круга, где сумма квадратов x и y близка к 1, метрические коэффициенты резко возрастают, как и длины тангенциальных векторов. К примеру, когда x = 0,7 и y = 0,7 , G11 и G22 равны 10 000 . При x = 0,705 и y = 0,705 значения коэффициентов будут больше 100 000 ; а для x = 0,7071 и y = 0,7071 – превысят 10 миллиардов . При приближении к границе круга эти коэффициенты будут не просто возрастать, но в конце концов устремятся к бесконечности – так же, как и расстояния до границы. Если бы вы были жуком, ползущим по поверхности в направлении границы круга, то, к величайшему огорчению, вы никогда бы ее не достигли. Впрочем, вы бы ничего не потеряли, поскольку данная поверхность не имеет границы в принципе. Если поместить открытый единичный круг на плоскость, то он приобретет границу в виде единичной окружности, являющейся частью данной плоскости. Но сам единичный круг Пуанкаре границы не имеет, и любой жук, пытающийся до нее добраться, умрет, так и не осуществив своей мечты. Этот непривычный и, возможно, противоречащий интуиции факт является результатом отрицательной кривизны единичного круга, обусловленной метрикой Пуанкаре.

Мы потратили некоторое время на обсуждение понятия метрики, для того чтобы уяснить для себя сущность кэлеровой метрики и кэлерового многообразия – многообразия, оснащенного подобной метрикой. Определить, является ли та или иная метрика кэлеровой, можно, исследуя ее изменение при переходе от одной точки к другой. Кэлеровы многообразия являются подклассом комплексных многообразий, известных как эрмитовы многообразия. При помещении начала комплексной системы координат в любую точку эрмитового многообразия метрика будет совпадать со стандартной евклидовой метрикой для данной точки. Однако при смещении из этой точки метрика становится все более и более неевклидовой. Выражаясь более строго, при смещении из начала координат на расстояние ε (эпсилон) метрические коэффициенты сами по себе изменятся на величину порядка ε . Такие многообразия принято характеризовать как евклидовы многообразия первого рода . Таким образом, если ε составляет одну тысячную миллиметра, то при смещении на ε коэффициенты эрмитовой метрики останутся постоянными в пределах одной тысячной миллиметра или около того. Кэлеровы многообразия являются евклидовыми многообразиями второго рода , что означает еще большую стабильность их метрики; метрические коэффициенты на кэлеровом многообразии при смещении из начала координат на ε изменяются как ε2 . Продолжая предыдущий пример, для кэлерова многообразия при смещении на ε = 0,001 мм метрика изменится на 0,000001 мм.

Итак, что же побудило Калаби выделить кэлеровы многообразия как одни из наиболее интересных? Для того чтобы ответить на этот вопрос, следует рассмотреть все возможные варианты. Если требовать полной строгости, можно настаивать, к примеру, на том, чтобы многообразия были совершенно плоскими. Но совершенно плоскими являются только те компактные многообразия, которые имеют форму бубликов, торов и других близких к ним объектов, – что остается верным для любых размерностей, начиная от двух и выше. Тороидальные объекты просты для изучения, но их количество ограничено. Математикам интереснее исследовать более разнообразные объекты, дающие им более широкий спектр возможностей. С другой стороны, требования для причисления многообразий к категории эрмитовых слишком слабы – следовательно, число возможных объектов чрезвычайно велико. Кэлеровы многообразия, лежащие между эрмитовыми и плоскими, имеют как раз такой набор свойств, который нужен геометрам. Их структура достаточно развита, чтобы упростить работу с ними, но не настолько, чтобы ограничить математика в выборе многообразия, удовлетворяющего его спецификациям.

Другой причиной внимания к кэлеровым многообразиям стала возможность использования для их исследования методов, введенных Риманом, которые впоследствии использовал Эйнштейн. Эти методы работают на кэлеровых многообразиях, представляющих собой ограниченный класс эрмитовых многообразий, но в целом к эрмитовым многообразиям неприменимы. Мы крайне заинтересованы в возможности использования данных методов, поскольку их надежность была проверена еще в процессе разработки самим Риманом, кроме того, математики имели более столетия на их дальнейшее усовершенствование. Все это делает кэлеровы многообразия весьма привлекательным выбором, поскольку мы по сути уже имеем на руках технологию работы с ними.

Но и это еще не все. Данные многообразия заинтересовали Калаби из‑за тех типов симметрии, которыми они обладают. Кэлеровы многообразия, как и все эрмитовы многообразия, обладают вращательной симметрией при умножении векторов на их поверхности на мнимую единицу i . Для случая одного комплексного измерения точки описываются парой чисел (a, b) , взятой из выражения a + bi . Допустим, что координаты (a, b) определяют тангенциальный вектор, выходящий из начала координат. При умножении вектора на i его длина сохраняется, хотя сам вектор поворачивается на 90 градусов. Чтобы посмотреть на это вращение в действии, возьмем некую точку (a, b) или a + bi . Умножение на i даст в результате ia ‑ b или, что эквивалентно, ‑b + ia , что соответствует новой точке (‑b, a) на комплексной плоскости, определяющей вектор, ортогональный исходному и имеющий одинаковую с ним длину.

Можно легко убедиться в том, что эти вектора действительно перпендикулярны, нарисовав точки (a, b) и (‑b, a) на координатной плоскости и измерив углы между отрезками, выходящими из начала координат и заканчивающимися в данных точках. Операция, о которой идет речь, – преобразование координаты x в координату (‑y) , а координаты y в координату x – носит название J‑преобразования , которое на вещественной плоскости является аналогом умножения на i на комплексной. Дважды проведенное J‑преобразование (или J2) аналогично умножению вектора на ‑1. Дальнейшее объяснение будет идти именно в терминах поворотов (J‑преобразований), а не в терминах умножения на мнимую единицу, поскольку процесс преобразования проще представить – не важно, в голове или на бумаге – на вещественной, а не на комплексной координатной плоскости. При этом нужно не забывать, что J‑преобразование является только удобной иллюстрацией комплексного умножения на i путем перехода к двухмерным вещественным координатам.

Все эрмитовы многообразия имеют этот тип симметрии: J‑преобразования поворачивают все вектора на 90 градусов, сохраняя их длины неизменными. Кэлеровы многообразия, представляющие собой подмножество эрмитовых многообразий, обладают такой же симметрией. Кроме того, кэлеровы многообразия обладают так называемой внутренней симметрией – специфическим типом симметрии, который должен сохраняться при перемещении между любыми двумя точками пространства с кэлеровой метрикой. Многие из видов симметрий, с которыми мы постоянно сталкиваемся в природе, относятся к группе вращений.

Сфера, к примеру, имеет глобальную симметрию – названную так, поскольку она работает относительно любой точки сферы. Одним из типов симметрии в данном случае является вращательная инвариантность, означающая, что при любом повороте сфера совпадает сама с собой. Симметрия кэлерова многообразия, с другой стороны, более локальна, поскольку она относится только к первым производным метрики. Однако благодаря методам дифференциальной геометрии, позволяющим осуществить интегрирование по всему многообразию, можно увидеть, что условие кэлеровости и связанная с ним симметрия подразумевают особое отношение между различными точками. Таким образом, симметрия, изначально охарактеризованная как локальная, при помощи интегрального исчисления приобретает более глобальную роль связующего звена между различными точками многообразия.

Основная проблема данного типа симметрии относится к особой разновидности преобразования, называемой параллельным переносом . Параллельный перенос, как и операция поворота, является линейным преобразованием: это преобразование подразумевает такое перемещение векторов вдоль определенной траектории на поверхности или многообразии, при котором сохраняются не только длины всех векторов, но и углы между любой парой векторов. В тех случаях, когда параллельный перенос сложно представить наглядно, точный путь перемещения векторов можно рассчитать при помощи метрики, решая дифференциальные уравнения.

На плоской, евклидовой поверхности все очень просто: нужно только сохранять направление и длину каждого вектора. На искривленных поверхностях и для произвольных многообразий условие постоянства длин и углов сохраняется, хотя и несколько усложняется по сравнению с евклидовым пространством.

Особенность кэлерова многообразия состоит в следующем: если при помощи операции параллельного переноса переместить вектор V из точки P в точку Q вдоль заданной траектории, то результатом этого перемещения станет новый вектор W1 . Применив к вектору операцию поворота на 90 градусов (J‑операцию), мы получим новый вектор JW1 . С тем же успехом можно сначала применить к вектору V операцию поворота (J‑операцию), в результате которой возникнет новый вектор JV, по‑прежнему начинающийся в точке P . Если после этого параллельно перенести вектор JV в точку Q и полученный вектор назвать W2 , то в случае кэлерова многообразия векторы JW1 и W2 будут идентичны вне зависимости от пути перемещения между точками P и Q . Можно сказать, что на кэлеровом многообразии J‑операция инвариантна относительно параллельного переноса. Для комплексных многообразий в общем случае это не так. Можно сформулировать это условие и в другом виде: на кэлеровом многообразии параллельный перенос вектора с последующим его поворотом аналогичен повороту вектора с последующим параллельным переносом. Эти две операции коммутируют – поэтому не имеет значения, в каком порядке их выполнять. В общем случае это не так, как наглядно объяснил Роберт Грин: «Открыть дверь и затем выйти из дому – это далеко не то же самое, что выйти из дому и лишь затем открыть дверь».

Основная идея параллельного переноса проиллюстрирована на рис. 4.3 для поверхности с двумя вещественными измерениями или одним комплексным (поверхность с большим числом измерений нарисовать проблематично). Впрочем, этот случай скорее тривиален, поскольку число возможных направлений поворота ограничено числом два: влево и вправо.

Однако уже для двух комплексных измерений (четырех вещественных) число векторов определенной длины, перпендикулярных любому заданному вектору, бесконечно велико. Эти векторы образуют касательное пространство, которое в двухмерном случае можно представить как огромный кусок фанеры, лежащий на верхушке баскетбольного мяча. В этом случае знание того, что необходимый нам вектор перпендикулярен некоему другому, известному нам, едва ли заметно упростит его нахождение – если только многообразие, которому он принадлежит, не является кэлеровым. Для кэлерова многообразия, зная вектор, полученный при повороте на 90 градусов (J‑преобразовании) в одной из точек многообразия, можно точно предсказать величину и направление подобных векторов в любой другой точке, поскольку параллельный перенос дает возможность переместить этот вектор из первой точки во вторую.

Рис. 4.3. На первом рисунке изображен параллельный перенос вектора V из точки P в точку Q , в которой этот вектор приобретает новое имя W1 . Затем при помощи так называемой J‑операции вектор W1 поворачивается на 90 градусов. Повернутый вектор носит название JW1 . На втором рисунке J‑операция проводится над вектором V в точке P , результатом которой становится новый вектор (повернутый на 90 градусов) – JV . При помощи параллельного переноса этот вектор перемещают в точку Q , где он получает новое имя W2 . В обоих случаях результирующие векторы будут одинаковы. Это один из признаков кэлерова многообразия, а именно независимость результата от последовательности, в которой выполняются операции поворота и параллельного переноса. Эти две операции коммутируют , то есть порядок их выполнения не имеет значения

 

Существует еще один способ показать, что эта простая операция (поворот на 90 градусов, или J‑преобразование) тесно связана с симметрией. Этот тип симметрии называется четырехкратной симметрией, поскольку при каждом J‑преобразовании вектор поворачивается на 90 градусов. В результате четырех последовательных преобразований вектор повернется на 360 градусов и, пройдя полный круг, вернется в начальную точку. Иначе говоря, два J‑преобразования аналогичны умножению на ‑1. Четыре преобразования приведут к умножению вектора на единицу (‑1×‑1=1). В результате мы вернемся к тому, с чего начали.

Очевидно, что данная симметрия применима только к касательному пространству в определенной точке, но для того чтобы это свойство было действительно полезным, четырехкратная симметрия должна сохраняться и при перемещении по всему пространству. Эта согласованность является важной особенностью внутренней симметрии. Представьте себе стрелку компаса, которая характеризуется двухкратной симметрией в том смысле, что она может указывать только в двух направлениях – северном и южном. Если при вращении компаса в пространстве его стрелка будет беспорядочным образом указывать то на север, то на юг без какой‑либо причины, можно сделать вывод о том, что пространство, в котором вы находитесь, либо не обладает соответствующей симметрией, либо не имеет заметного магнитного поля (либо вам пора покупать новый компас). Аналогично, если J‑операция дает разные результаты в зависимости от положения точки на многообразии и направления поворота, то это означает, что в многообразии отсутствуют порядок и предсказуемость, обеспечиваемые симметрией. Более того, вы можете быть уверены, что это многообразие не кэлерово.

Внутренняя симметрия, во многом определяющая кэлеровы многообразия, ограничена касательным пространством к данным многообразиям. Это может иметь определенные преимущества, поскольку на касательном пространстве результат любой операции не зависит от выбора системы координат. Именно это свойство – независимость результатов операции от выбора системы координат – представляет чрезвычайный интерес как с геометрической, так и с физической точки зрения. Проще говоря, если результаты зависят от выбора ориентации осей или начала координат, то для нас они неинтересны.

Рис. 4.4. На рисунке проиллюстрирован простой и весьма очевидный факт: квадрат имеет четырехкратную симметрию относительно его центра. Иными словами, повернув квадрат четыре раза на 90 градусов, мы получим исходную фигуру. Поскольку J‑операция представляет собой поворот на 90 градусов, она также имеет четырехкратную симметрию, и четыре поворота приведут к исходному объекту. Формально говоря, J‑операция действует только на касательные векторы, поэтому она – весьма грубый аналог вращения фигуры, подобной квадрату. J‑преобразование, как обсуждается в тексте, является вещественным аналогом умножения на i . Умножение некого числа на i четыре раза равноценно умножению его на единицу, и оно, подобно проведенной четыре раза J‑операции, неизбежно приведет к тому числу, с которого мы начали

 

Требование внутренней симметрии наложило на представленный Калаби математический мир ряд дополнительных ограничений, значительно упростив его и сделав проблему доказательства его существования потенциально разрешимой. Впрочем, Калаби не обратил внимания на некоторые другие следствия из его теории; на самом деле внутренняя симметрия, наличие которой он предположил для своих многообразий, является особой разновидностью суперсимметрии, что особенно важно для теории струн.

Последние два фрагмента нашей мозаики – классы Черна и кривизна Риччи – возникли из попыток геометров обобщить одномерные римановы поверхности на случай многих измерений и затем попытаться математически описать различия между ними. Это привело к возникновению важной теоремы, относящейся к компактным римановым поверхностям, – как, впрочем, и ко всем компактным поверхностям, не имеющим границ. Определение границы в топологии дается скорее на интуитивном уровне: диск имеет границу, или четко определенный край, тогда как сфера границы не имеет. На поверхности сферы можно сколь угодно долго двигаться в любом направлении, никогда не достигая никакой границы и даже не приближаясь к ней.

Теорема, сформулированная в XIX веке Карлом Фридрихом Гауссом и французским математиком Пьером Бонне, связала геометрию поверхности с ее топологией.

Согласно формуле Гаусса‑Бонне, общая гауссова кривизна подобных поверхностей равна произведению эйлеровой характеристики поверхности на . Эйлерова характеристика, обозначаемая греческой буквой χ («хи»), в свою очередь равна 2–2g , где g – это род (число «дырок» или «ручек» на данной поверхности). К примеру, эйлерова характеристика двухмерной сферы, не имеющей дырок, будет равна 2. Эйлер вывел отдельную формулу для нахождения эйлеровых характеристик любого многогранника: χ=V‑E+F , где V – число вершин, E – число ребер, a F – число граней. Для тетраэдра χ=4‑6+4=2 , точно так же, как и для сферы. Для куба, имеющего 8 вершин, 12 ребер и 6 граней, χ=8‑12+6=2 – снова то же, что и для сферы. Причина того, что эти топологически идентичные (хотя и геометрически различные) объекты имеют одинаковую величину заключается в том, что эйлеровы характеристики всецело определяются топологией объекта и не зависят от его геометрии. Эйлерова характеристика χ стала первым из основных топологических инвариантов пространства – величин, остающихся неизменными – инвариантными – для пространств, имеющих совершенно различный внешний вид, подобно являющимся топологически эквивалентными сфере, тетраэдру и кубу.

Вернемся к формуле Гаусса‑Бонне. Общая гауссова кривизна двухмерной сферы будет равна 2π×2 , или . Кривизна двухмерного тора равна нулю, поскольку в нем имеется одна дырка и, следовательно, χ=2‑2g=2‑2=0 . Обобщение принципа Гаусса‑Бонне на случай большего числа измерений приводит к возникновению так называемых классов Черна . Классы Черна были созданы моим руководителем и наставником Ч. Ш. Черном как весьма грубый математический метод охарактеризовать различия между многообразиями. Говоря простыми словами, многообразия, для которых имеются разные классы Черна, не могут быть одинаковы, хотя обратное верно далеко не всегда: многообразия могут иметь один и тот же класс Черна и при этом оставаться различными.

Для имеющих одно комплексное измерение римановых поверхностей существует только один класс Черна, а именно первый, в данном случае совпадающий с эйлеровой характеристикой. Количество классов Черна для конкретного многообразия зависит от количества измерений. К примеру, многообразие с двумя комплексными измерениями имеет первый и второй классы Черна. Многообразия, представляющие большой интерес для теории струн – обладающие тремя комплексными (или шестью вещественными) измерениями, – имеют три класса Черна. В этом случае первый класс Черна приписывает двухмерным подпространствам шестимерного многообразия (их можно представить как набитую двухмерными листами бумаги трехмерную комнату) определенные целые коэффициенты. Второй класс Черна присваивает коэффициенты четырехмерным подмногообразиям шестимерного пространства. Третий класс присваивает определенное число, а именно эйлерову характеристику χ , всему многообразию, имеющему три комплексные размерности и шесть вещественных. Для многообразий, имеющих n комплексных измерений, последний класс Черна – n ‑й класс – всегда равен эйлеровой характеристике.

Рис. 4.5. Ориентируемая (двухсторонняя) поверхность в топологии описывается при помощи ее эйлеровой характеристики, или числа Эйлера. Для многогранника, являющегося геометрическим телом с плоскими гранями и прямыми ребрами, эйлерову характеристику можно рассчитать по простой формуле. Эйлерова характеристика, которая обозначается греческой буквой χ (хи), равна числу вершин минус число ребер плюс число граней. Для прямоугольной призмы или «коробки» в этом примере число Эйлера равно двум. Для тетраэдра это число также равно двум (4‑6+ 4), как и для пирамиды с квадратным основанием (5‑8+5). Нет ничего удивительного в том, что эти пространства имеют одинаковые эйлеровы характеристики, поскольку они топологически эквивалентны

 

V=8

E=12

F=6

χ=V‑E+F=2

 

 

Но что в действительности означает класс Черна? Иными словами, Для чего нужны все эти числа, которые ставятся в соответствие подмногообразиям? Как оказалось, о подмногообразиях самих по себе данные коэффициенты не сообщают ничего особо важного, но многое могут рассказать о тех многообразиях, частями которых они являются. Исследование структуры комплексных многомерных объектов путем определения количества и типов составляющих их частей является общепринятой практикой в топологии.

Представим, к примеру, что каждый житель Соединенных Штатов получил свой собственный номер. Номер, присвоенный каждому конкретному человеку, не содержит в себе совершенно никакой информации о нем или о ней. Но если взглянуть на эти номера как на единое целое, то можно много интересного узнать про более крупный «объект» – а именно Соединенные Штаты – например, про численность населения этой страны или скорость его роста.

Вот еще один пример, позволяющий наглядно представить это весьма абстрактное понятие. Как обычно, начнем рассмотрение с весьма простого объекта, а именно сферы – поверхности, имеющей одно комплексное или два вещественных измерения. Сфера имеет только один класс Черна, который в данном случае равен эйлеровой характеристике. Во второй главе, как вы помните, обсуждались некоторые особенности метеорологии и динамики морских течений на планете сферической формы. Представим теперь, что в каждой точке данной планеты с запада на восток дует ветер. Точнее, почти в каждой точке. Представить ветер, дующий в восточном направлении, на экваторе или на любой параллели, не составит никакого труда. Однако в двух точках, лежащих; на северном и южном полюсах, которые можно назвать сингулярными, ветра не будет вовсе – это неизбежное следствие сферической геометрии. Для поверхностей, обладающих подобными особыми точками, первый класс Черна не равен нулю. Иными словами, в данном случае первый класс Черна является неисчезающим.

Теперь рассмотрим бублик. Ветры на подобной поверхности могут дуть в любом направлении – по большим окружностям вокруг дырки, по малым окружностям через дырку или даже по более сложным спиральным траекториям, никогда не сталкиваясь с точкой сингулярности, в которой они должны остановиться. Можно совершить сколь угодно оборотов вокруг бублика, ни разу не натолкнувшись на какое‑либо препятствие.

Рассмотрим следующий пример. Для так называемых K3 поверхностей, имеющих два комплексных или четыре вещественных измерения, первый класс Черна обращается в нуль. Более подробно K3 поверхности будут рассмотрены в шестой главе. Согласно гипотезе Калаби, именно это свойство должно позволить им иметь риччи‑плоскую метрику, подобно тору. Однако в отличие от двухмерного тора, эйлерова характеристика которого равна нулю, величина χ для K3 поверхности равна 24. Дело в том, что эйлерова характеристика и первый класс Черна, совпадающие в случае одного комплексного измерения, для более высоких размерностей могут заметно отличаться.

Следующим пунктом в нашем списке является кривизна Риччи – ключевое понятие для понимания гипотезы Калаби. Кривизна Риччи является обобщением более конкретного понятия, известного как кривизна в двухмерном направлении . Для того чтобы понять, как с ней работать, представим себе простую картину: сферу и касательное к ней пространство – плоскость, касающуюся сферы в точке северного полюса. Эта плоскость, перпендикулярная прямой, соединяющей центр сферы и точку касания, содержит в себе все касательные вектора, которые можно построить из данной точки сферы. Аналогично, трехмерная поверхность имеет трехмерное касательное пространство, состоящее из всех векторов, являющихся касательными к данной точке, – и так для любого числа измерений. Каждый вектор, лежащий на касательной плоскости, также является касательным к большой окружности сферы, проходящей через северный и южный полюса. Если теперь взять все большие окружности, касательные к векторам плоскости и объединить их, то результатом будет новая двухмерная поверхность. В данном случае двухмерная поверхность, полученная таким образом, совпадет с первоначальной сферой, но для более высоких размерностей подобная поверхность будет представлять собой двухмерное подмногообразие, находящееся в пределах другого, большего по размерам пространства. Кривизна касательной плоскости в двухмерном направлении будет совпадать с гауссовой кривизной полученной двухмерной поверхности.

Для того чтобы найти кривизну Риччи, возьмем некую точку на многообразии и найдем касательный вектор, проходящий через нее. Затем обратим внимание на все касательные двухмерные плоскости, содержащие данный вектор, каждая из которых имеет свою собственную кривизну в двухмерном направлении, которая, как уже было сказано, совпадает с гауссовой кривизной связанной с ней поверхности. Кривизна Риччи представляет собой среднее значение кривизны всех этих плоскостей. Многообразие можно считать риччи‑плоским, если для любого произвольно выбранного вектора среднее кривизны касательных плоскостей в двухмерном направлении равно нулю, даже если для каждой отдельной плоскости это условие не выполняется.

Рис. 4.6. Первый класс Черна для двухмерных поверхностей, подобных этой, совпадающий с эйлеровой характеристикой, относится к точкам, в которых поток векторного поля полностью останавливается. На поверхности сферы, например глобуса, таких точек две. К примеру, если течение направлено с северного полюса на южный, как на изображенной слева сфере, то на каждом из полюсов суммарный поток будет равен нулю, поскольку в данных точках векторы будут взаимно компенсировать друг друга. Аналогично, если течение направлено с запада на восток, как на сфере, изображенной справа, также возникнут две точки остановки движения – на северном и южном полюсах, – в которых ничто не движется, поскольку само понятие востока и запада для этих точек отсутствует. Противоположным примером является поверхность бублика, на которой жидкость может течь как в вертикальном (на изображенном слева бублике), так и в горизонтальном направлении (на бублике, изображенном справа), не встречая при этом ни малейших препятствий. Именно поэтому первый класс Черна равен нулю для бублика, в котором сингулярные точки отсутствуют, но не равен нулю для сферы

 

Как вы уже могли догадаться, это означает, что ранее рассмотренный пример с двухмерной сферой, через северный полюс которой проходит касательный вектор, совершенно нам неинтересен, поскольку данный вектор содержится только в одной касательной плоскости. В этом случае кривизна Риччи представляет собой просто кривизну в двухмерном направлении этой плоскости, которая, в свою очередь, совпадает с гауссовой кривизной сферы, – для сферы единичного радиуса эта кривизна будет равна единице. Но при переходе к более высоким размерностям, число комплексных измерений для которых больше одного или число вещественных измерений больше двух, возникает весьма широкий выбор касательных плоскостей, и, как следствие, многообразие может быть риччи‑плоским, не будучи при этом плоским во всех своих точках, то есть, будучи риччи‑плоским, оно может иметь отличную от нуля кривизну в двухмерном направлении и отличную от нуля гауссову кривизну.

Рис. 4.7. Определение первого класса Черна для конкретного объекта сводится к нахождению точек, в которых поток векторного поля обращается в нуль. Подобные точки можно обнаружить в центре воронки, например в центре урагана, который представляет собой имеющую круговую форму область спокойной погоды, от 2 до 200 миль в диаметре, окруженную одними из наиболее грандиозных атмосферных явлений. На фотографии запечатлен ураган Фран 1996 года, как раз перед тем, как он опустошит Восточное побережье Соединенных Штатов, принеся миллиарды долларов убытка (фотография Хаслера, Честера, Грисволда, Пирса, Паланнаппана, Маньина, Суммея, Стара, Кенитцера & де Да Бюжардере, Лаборатория по изучению атмосферы, Центр космических полетов доктора Годдарда, НАСА)

 

Кривизна в двухмерном направлении полностью определяет риманову кривизну, которая, в свою очередь, содержит в себе всю возможную информацию о кривизне поверхности. В четырехмерном случае для описания кривизны необходимы двадцать чисел, для более высоких размерностей – еще больше. Тензор римановой кривизны может быть представлен в виде суммы двух слагаемых – тензора Риччи и так называемого тензора Вейля, на котором мы подробно останавливаться не будем. Главное, что из двадцати чисел, необходимых для описания римановой кривизны в четырехмерном случае, десять описывают кривизну Риччи и десять – кривизну Вейля.

Тензор кривизны Риччи, являющийся ключевым составляющим известного уравнения Эйнштейна, характеризует влияние материи и энергии на геометрию пространства‑времени. По сути дела, левая часть этого уравнения представляет собой так называемый тензор Эйнштейна – модифицированный тензор Риччи, тогда как в правой части находится тензор энергии‑импульса , описывающий плотность и поток материи в пространстве‑времени. Иными словами, уравнение Эйнштейна связывает поток плотности материи и импульс в данной точке пространственно‑временного континуума с тензором Риччи. Поскольку тензор кривизны Риччи является только частью общего тензора кривизны, как уже говорилось выше, невозможно определить кривизну в целом только на основании этого тензора. Надежду на определение кривизны пространства‑времени дает нам знание глобальной топологии.

В частном случае, когда масса и энергия равны нулю, уравнение сводится к следующему: тензор Эйнштейна = 0. Это так называемое уравнение Эйнштейна для вакуума, и хотя на первый взгляд оно может показаться простым, не следует забывать, что это уравнение является нелинейным дифференциальным уравнением в частных производных, которые почти никогда не решаются просто. Более того, уравнение Эйнштейна для вакуума на самом деле представляет собой систему из десяти нелинейных дифференциальных уравнений в частных производных, поскольку тензор состоит из десяти независимых коэффициентов. Это уравнение очень похоже на гипотезу Калаби, которая предполагает равенство нулю кривизны Риччи. Нет ничего особо удивительного в том, что оно имеет так называемое тривиальное решение, которое не представляет никакого интереса: пространственно‑временной континуум, в котором нет ни материи, ни гравитации и в котором в принципе ничего не происходит. Однако существует и более интригующая возможность и именно о ней идет речь в гипотезе Калаби: может ли уравнение Эйнштейна для вакуума также иметь и нетривиальное решение? И ответ на этот вопрос, как мы увидим в свое время, утвердительный.

Вскоре после того, как Черн в середине 1940‑х годов сформулировал понятие классов Черна, он показал, что для многообразий с кривизной Риччи, равной нулю, то есть для многообразий определенной геометрии, первый класс Черна также должен обращаться в нуль. Калаби представил проблему в другом виде, задавшись вопросом, насколько топологические особенности пространства определяют его геометрию или, точнее, позволяют пространству иметь ту или иную геометрию. Обратное верно далеко не всегда. К примеру, известно, что гладкая поверхность, то есть не имеющая углов, гауссова кривизна которой больше единицы, должна быть ограниченной или компактной. Она не может простираться до бесконечности. Но в общем случае компактные гладкие поверхности не обязательно имеют метрику с гауссовой кривизной больше единицы.

Например, бублик является совершенно гладким и компактным, однако его гауссова кривизна далеко не везде положительна, не говоря уже о том, что она далеко не всегда больше единицы. На самом деле, как уже обсуждалось ранее, метрика с гауссовой кривизной, равной нулю, вполне возможна, а метрика, кривизна которой всюду положительна, – нет.

Таким образом, гипотеза Калаби столкнулась с двумя большими затруднениями: из того, что эта гипотеза представляла собой утверждение, обратное общеизвестному факту, еще не следовала ее истинность. И даже при условии ее истинности, доказать существование метрики, удовлетворяющей всем необходимым требованиям, чрезвычайно сложно. Подобно гипотезе Пуанкаре, появившейся ранее, гипотезу Калаби, точнее важный частный случай этой гипотезы, можно сформулировать одним предложением: «Компактное кэлерово многообразие, в котором первый класс Черна обращается в нуль, может иметь риччи‑плоскую метрику». Однако для доказательства этого простого утверждения потребовалось более двух десятилетий. Ну а работа над всеми возможными следствиями из данного утверждения продолжается уже несколько десятилетий после его доказательства.

Как заметил Калаби: «Я изучал кэлерову геометрию и понял, что пространство, которое может иметь по крайней мере одну кэлерову метрику, может также иметь и другие кэлеровы метрики. Найдя одну из них, не составит труда найти и прочие. Моей целью было нахождение такой метрики, которая была бы лучше всех остальных – более “округлая”, если так можно выразиться, – та, которая дает больше всего информации и сглаживает все неровности многообразия». Таким образом, гипотеза Калаби, по его словам, посвящена тому, как найти «лучшую» метрику.[43]