Метод построения диаграмм состояния двойных сплавов

 

Диаграмма состояния представляет собой графическое изображе­ние фазового состояния сплавов данной системы в функции темпера­туры и концентрации (рис. 17).

 

Рис. 17. Метод построения диаграмм состояния

 

Левая крайняя точка на оси концентраций соответствует 100 % содержанию компонента А. Процентное содержание второго компо­нента откладывается по этой оси слева направо. Правая крайняя точка соответствует 100 % содержанию второго компонента В.

Наличие в сплавах промежуточных фаз, образующихся в сплавах в интервале концентраций между чистыми элементами или твердыми растворами на их основе, позволяет рассматривать части диаграммы, между такой фазой и любым из элементов, независимо друг от друга.

Диаграммы состояний строят экспериментально. Для построения диаграммы состояний сплавов, образованных компонентами А и В, необходимо изготовить серию сплавов, содержащих различные количества компонентов А и В. Для каждого такого сплава экспериментально строят кривые охлаждения и определяют по ним критические точки, т. е. температуры фазовых превращений. Полученные значения критических точек изучаемых сплавов откладывают на вертикальных линиях, соответствующих химическому составу этих сплавов. Затем соединяют критические точки, соответствующие определенным фазовым превращениям, и получают линии диаграммы состояний. Линия MKN геомет­рическое место всех верхних точек, которые определяют температуры началакристаллизации сплавов. Ее называют линией ликвидус (ликва по латыни означает жидкий). Линия MP'N – геометрическое место всех нижних критических точек, которые определяют температуры конца кристаллизации сплавов. Ее называют линией солидус (солид твердый). Эти линии разделяют диаграмму состояний на области определенного фазового состава. Экспериментально построенные кривые охлаждения и диаграммы состояний проверяют по правилу фаз.

Правило фазустанавливает температурные условия процесса кристаллизации при заданном давлении, а также определяет, сколько фаз должно быть в чистом компоненте или в сплаве определенного состава, если они находятся в равновесном состоянии при данной температуре (или давлении).

Равновесное фазовое состояние сплава определяется составом фаз, температурой и давлением. Число факторов, которые можно ме­нять, не изменяя фазового состава сплава, называют степенью свободы.

Степень свободы C определяется числом компонентов К и числом фаз Ф,имеющихся в сплаве при данной температуре и давлении:

C = К + 2 – Ф

Обычно диаграммы состояний строят для постоянного (атмосфер­ного) давления. В этом случае формула принимает вид:

C = К + 1 – Ф.

Для чистых компонентов степень свободы может принимать зна­чения 0 или 1. В первом случае фазовый состав сохраняется неизмен­ным только при постоянной температуре. Во втором – при изменении температуры. Например, в процессе кристаллизации чистого элемента одновременно существуют две фазы (жидкая и твердая). По правилу фаз можно определить число степеней свободы: С = К + 1 – Ф = 1 + 1 – 2 = 0. Это значит, что процесс кристаллизации чистого эле­мента пока существуют две фазы, протекает изотермически (рис. 17). Исчезновение одной из фаз (при полном затвердевании или расплавле­нии) изменяет число степеней свободы С = 1 + 1 – 1 = 1, т. е. на участках кривой охлаждения выше или ниже температуры кристал­лизации превращений не будет.

Для двойных сплавов, состоящих из двух компонентов, степень свободы может принимать значения 0; 1 и 2. В процессе кристаллизации такого сплава (см. рис. 17) степень свободы будет равна С = К + 1 – Ф = 2 + 1 – 2 = 1. Это свидетельствует о наличии функциональной зависимости между температу­рой и концентрацией фаз. Процесс кристаллизации сплава, несмотря на выделение теплоты кристаллизации, протекает при понижающейся температуре, хотя и с меньшей скоростью. Каждой температуре в пе­риод кристаллизации соответствует определенная концентрация и количество фаз (правило концентрации и правило отрезков).

При кристаллизации некоторых двойных сплавов (эвтектических, перетектических и др.) количество фаз может быть равным трем. В та­ком случае С = 2 + 1 – 3 = 0, т. е. процесс протекает изотермически и при постоянной концентрации всех трех фаз.

Правило концентрацииустанавливает концентрацию фаз сплава при заданной температуре в период кристаллизации. Концентрация жидкой фазы при данной температуре t1 (см. рис. 17) определяется точкой, лежащей при этой температуре на линии ликвидус, т. е. Жс. Концентрация твердой фазы при этой же температуре определяется точкой, лежащей на линии солидус, т. е. αа.

Таким образом в процессе кристаллизации сплава 1 компонент В в жидкой и твердой фазе распределился неодинаково. Будучи более легкоплавким компонентом, чем компонент А, он в большем количестве сохранился в жидкой фазе и в меньшем количестве вошел во вновь образующиеся твердые кристаллы α. Более тугоплавкий, компо­нент А в большем количестве сосредоточился в кристаллах α.

Неравномерность распределения компонентов в жидкой и твердой фазе оценивают коэффициентом распределения К = Жс / αа. Это явле­ние легло в основу кристаллофизических методов получения сверх­чистых полупроводниковых элементов.

Из всего сказанного можно сделать вывод, что химический состав выделяющихся кристаллов по мере снижения температуры изме­няется по линии солидус от точки К' до Р'. В это же время состав жидкой фазы изменяется по линии ликвидус от точки К до точки Р, т. е. обогащается более легкоплавким компонентом В.

Тем не менее, при очень медленном (равновесном) охлаждении (а все диаграммы строятся именно для этого случая) химический состав твердых кристаллов вследствие процесса диффузии выравнивается и к концу кристаллизации определяется точкой Р', соответствуя хими­ческому составу сплава.

В реальных условиях охлаждения такого выравнивания может и не произойти. В этом случае химический состав одного кристалла в разных его точках может различаться. Такую химическую неодно­родность называют микроликвацией.

Правило отрезковустанавливает количественное соотношение фаз в период кристаллизации. Так, например, при температуре t1 (см. рис. 15) количество жидкой и твердой фазы в сплаве определится соотношением

гдеЖс + αа – общее количество сплава.

 

Таким образом, количество жидкой фазы Жс пропорционально отрезку аб, прилегающему к линии солидус, а количество твердой фазы αа – отрезку бс,прилегающему к линии ликвидус. По мере раз­вития процесса кристаллизации отрезок аб, определяющий количество жидкой фазы, уменьшается, а отрезокбс, наоборот, растет.

7. Железоуглеродистые сплавы

Железоуглеродистые сплавы - сплавы железа (Fe) с углеродом (C) на основе железа. Варьируя состав и структуру, получают железоуглеродистые сплавы с разнообразными свойствами, что делает их универсальными материалами. Различают чистые железоуглеродистые сплавы для исследовательских целей (со следами примесей) и технические железоуглеродистые сплавы - стали и чугуны.

Технические железоуглеродистые сплавы содержат примеси, которые подразделяют: на обычные (P, S, Mn, Si, H, N, O), легирующие (Cr, Ni, Mo, W, V, Ti, Co, Cu и другие) и модифицирующие (Mg, Ce, Ca и другие). Начало научного изучения системы Fe-C (железо-углерод) положили русские металлурги П.П. Аносов и Д.К. Чернов.

Железоуглеродистые сплавы также условно называют чёрными сплавами.

Основное представление о строении железоуглеродистых сплавов даёт широко известная диаграмма состояний железо-углерод.

Принято называть чугунами технические железоуглеродистые сплавы, содержащие более 2%C (2,14%), а сталями, соответственно - менее 2%C. Немного подробнее о разнице между чугунами и сталями на следующей странице >>>

Фазы железоуглеродистых сплавов:

Феррит; Аустенит; Цементит; Графит

Структуры железоуглеродистых сплавов:

Ледебурит; Мартенсит; Перлит; Сорбит; Троостит; Бейнит (устар: игольчатый троостит); Видманштет

 

8.Сталь - деформируемый (ковкий) сплав железа с углеродом (до 2,14%) и другими элементами. Получают, главным образом, из смеси чугуна со стальным ломом в кислородных конвертерах, мартеновских печах и электропечах. Сплав железа с углеродом, содержащий более 2,14% углерода, называют чугуном.

99% всей стали - материал конструкционный в широком смысле слова: включая стали для строительных сооружений, деталей машин, упругих элементов, инструмента и для особых условий работы - теплостойкие, нержавеющие, и т.п. Его главные качества - прочность (способность выдерживать при работе достаточные напряжения), пластичность (способность выдерживать достаточные деформации без разрушения как при производстве конструкций, так в местах перегрузок при их эксплуатации), вязкость (способность поглощать работу внешних сил, препятствуя распространению трещин), упругость, твердость, усталость, трещиностойкость, хладостойкость, жаропрочность.

Для изготовления подшипников широко используют шарикоподшипниковые хромистые стали ШХ15 и ШХ15СГ. Шарикоподшипниковые стали обладают высокой твердостью, прочностью и контактной выносливостью.

Пружины, рессоры и другие упругие элементы работают в области упругой деформации материала. В то же время многие из них подвержены воздействию циклических нагрузок. Поэтому основные требования к пружинным сталям - это обеспечение высоких значений пределов упругости, текучести, выносливости, а также необходимой пластичности и сопротивления хрупкому разрушению (55С2, 60С2А, 50ХФА, 30Х13, 03Х12Н10Д2Т).

Высокопрочные стали имеют высокую прочность при достаточной пластичности (среднеуглеродистая легированная сталь 40ХН2МА), высокой конструктивной прочностью, малой чувствительностью к надрезам, высоким сопротивлением хрупкому разрушению, низким порогом хладноломкости, хорошей свариваемостью.

Классификация сталей и сплавов производится:

  • по химическому составу;
  • по структурному составу;
  • по качеству (по способу производства и содержанию вредных примесей);
  • по степени раскисления и характеру затвердевания металла в изложнице;
  • по назначению.

Химический состав
По химическому составу углеродистые стали делят в зависимости от содержания углерода на следующие группы:

  • малоуглеродистые - менее 0,3% С;
  • среднеуглеродистые - 0,3...0,7% С;
  • высокоуглеродистые - более 0,7 %С.

Для улучшения технологических свойств стали легируют. Легированной называется сталь, в которой, кроме обычных примесей, содержатся специально вводимые в определенных сочетаниях легирующие элементы (Сr, Ni, Мо, Wo, V, Аl, В, Тl и др.), а также Mn и Si в количествах, превышающих их обычное содержание как технологических примесей (1% и выше). Как правило, лучшие свойства обеспечивает комплексное легирование.

В легированных сталях их классификация по химическому составу определяется суммарным процентом содержания легирующих элементов:

  • низколегированные - менее 2,5%;
  • среднелегированные - 2,5...10%;
  • высоколегированные - более 10%.

Структурный состав
Легированные стали и сплавы делятся также на классы по структурному составу:

  • в отожженном состоянии - доэвтектоидный, заэвтектоидный, ледебуритный (карбидный), ферритный, аустенитный;
  • в нормализованном состоянии - перлитный, мартенситный и аутенитный.

К перлитному классу относят углеродистые и легированные стали с низким содержанием легирующих элементов, к мартенситному - с более высоким и к аустенитному - с высоким содержанием легирующих элементов.