ПОЛИМОРФНЫЕ ПРЕВРАЩЕНИЯ
Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах или, как их называют, в разных полиморфных модификациях. В результате полиморфного превращения атомы кристаллического тела, имеющие решетку одного тина, перестраиваются таким образом, что образуется кристаллическая решетка другого типа
Переход чистого металла из одной полиморфной модификации в другую в условиях равновесия протекает при постоянной температуре (критическая точка) и сопровождается выделением теплоты, если превращение идет при охлаждении, или поглощением теплоты - в случае нагрева. Как и при кристаллизации из жидкой фазы, для того чтобы полиморфное превращение протекало, нужно некоторое переохлаждение (или перенагрев) относительно равновесной температуры, для возникновения разности свободных энергий между исходной и" образующейся новой модификациями. В твердом металле в отличие от жидкого возможно достижение очень больших степеней переохлаждения. Полиморфное превращение по своему механизму — кристаллизационный процесс осуществляется путем образования зародышей и последующего их роста.При полиморфном превращении кристаллы (зерна) новой полиморфной формы растут в результате неупорядоченных, взаимно не связанных переходов атомов через границу'фаз. Отрываясь от решетки исходной фазы (например, (S), атомы по одиночке или группами присоединяются к решетке новой фазы (а), и, как следствие этого, граница зерна а. передвигается в сторону зерна (3, «поедая» исходную фазу. Зародыши новой модификации наиболее часто возникают на границах зерна исходных кристаллитов или в зонах с повышенным уровнем свободной энергии. Вновь образующиеся кристаллы закономерно ориентированы по отношению к кристаллам исходной модификации.
В результате полиморфного превращения образуются новые кристаллические зерна, имеющие другой размер и форму, поэтому такое превращение также называют перекристаллизацией. Полиморфные превращения происходят не только в чистых металлах, но и в сплавах. Полиморфное превращение сопровождается скачкообразным изменением всех свойств металлов или сплавов: удельного объема, теплоемкости, теплопроводности, электропроводности, магнитных свойств, механических й химических свойств и т. д.
8.Методы исследования строения и свойств сплавов. Успешное развитие машиностроения и связанных с ним отраслей промышленности обязано тому, что в процессе производства конструкционных материалов и различных изделий из них широко используются различные методы исследования строения и свойств металлических сплавов и других материалов.Развитие этих методов обусловлено необходимостью получать сведения об эксплуатационной надежности используемых материалов, о причинах поломок и аварий, об остаточном ресурсе вязкостно-прочностных свойств у материала изделия в процессе эксплуатации, а также о путях совершенствования строения и свойств конструкционных материалов.К настоящему времени сложилось много различных методов исследования металлов. Все их можно разделить на теоретические и экспериментальные.К теоретическим, относится анализ соответствующих диаграмм состояний с целью получения сведений о строении и свойствах интересующих нас сплавов не только в равновесном состоянии, но и после их термообработки.Большинство методов исследования являются экспериментальными, основанными на анализе результатов наблюдения строения металла или результатов его испытания, проводимого по какой-то методике.
Первым возник метод макроскопического исследования путем наблюдения исследуемого изделия простым глазом или с помощью лупы.Этим методом при наличии опыта и соответствующих навыков можно определить качество металла по внешнему виду изделия, оценивая состояние его поверхности, наличие явных дефектных мест и других характерных признаков.Наблюдая отполированные и протравленные по специальной методике, можно обнаружить в металле различные внутренние дефекты: поры, раковины, неметаллические включения и особенно включения вредных примесей, а также оценить характер строения .Визуально оценивается также качество металла по виду излома специального образца, например разрушенного образца при испытании на ударный изгиб, или подобного ему образца, раскрывающего особенности строения и металлургического качества металла в сечении изделия. Такое исследование называется фрактографическим. При фрактографическом исследовании по виду излома судят о вязкости или хрупкости металла. Матово-волокнистый излом свидетельствует о вязкости, а блестяще-кристаллический — о хрупкости.В изломе могут оказаться мелкие или крупные расслоения металла (так называемые шиферность и слоистость), свидетельствующие о его плохом металлургическом качестве и низкой прочности.Оптические микроскопы дают возможность различать в строении металла структурные элементы размером не менее 0,2 мкм (200 нм). Их полезное увеличение составляет до 1500—2000 раз. Существуют две разновидности электронных микроскопов: просвечивающие (ПЭМ) и растровые (РЭМ).Особенности атомно-кристаллического строения изучаются с помощью рентгеноструктурного анализа. Этот вид анализа основан на дифракции рентгеновских лучей рядами атомов в кристаллической решетке.Особенности распределения примесей и компонентов в сплавах (в том числе легирующих элементов в зернах стали) позволяет обнаружить рентгеноспек-тральный микроанализ (РСМА). РСМА основан на определении химического состава микрообластей на специально приготовленном микрошлифе. Разрешающая способность — порядка нескольких микрометров. Этим методом можно успешно изучать ликвационные процессы в сплавах, особенно дендритную ликвацию.
При физических методах исследования металл подвергается тепловому, электрическому или магнитному воздействию, по результатам которого судят об особенностях его строения и свойств. В основе этих методов лежит давно известное положение о зависимости физических свойств металла от изменений в его строении при различных воздействиях, в том числе механических и термических. Самыми распространенными являются методы испытания механических свойств и натурные испытания деталей или готовых изделий при нагружении в эксплуатационных условиях на специально создаваемых стендах (стендовые испытания).
9.ОСНОВНЫЕ СВЕДЕНИЯ О СПЛАВАХ.Создание металлических сплавов является первым и наиболее ответственным этапом, во время которого в конструкционный материал должны быть заложены важнейшие предпосылки для формирования оптимальной дислокационной структуры и хорошего металлургического качества на всех последующих этапах. Сплавы сложные вещества, получаемые сплавлением или спеканием двух или нескольких простых веществ, называемых компонентами. Сплав считается металлическим, если его основу составляют металлические компоненты. Металлические сплавы обладают более высокими прочностными и другими механическими свойствами по сравнению с чистыми металлами. По этой причине они получили широкое применение в качестве конструкционных материалов. В зависимости от природы сплавляемых компонентов они, взаимодействуя друг с другом, могут образовать различные по строению и свойствам продукты. Характер взаимодействия компонентов при сплавлении зависит от их положения в таблице Д. И. Менделеева, особенностей строения электронных оболочек их атомов, типов и параметров их кристаллических решеток, соотношения температур их плавления, их атомных диаметров и других факторов. В зависимости от преобладания тех или иных перечисленных факторов компоненты при сплавлении могут образовывать: смеси своих зерен с пренебрежимо ничтожной взаимной растворимостью; неограниченно или частично растворяться друг в друге; образовывать химические соединения. Смеси состоят из практически чистых зерен обоих компонентов, сохраняющих присущие им типы кристаллических решеток и прочностные свойства. При растворении компонентов друг в друге образуются твердые растворы. Получающийся при этом продукт представляет собой зерна, кристаллическая решетка которых построена из атомов обоих компонентов. Если атомы растворимого компонента замещают в узлах решетки атомы компонента-растворителя, то образующийся раствор называется твердым раствором замещения. Такие растворы образуют компоненты с аналогичными типами кристаллических решеток при небольшой разнице их параметров. Если растворимый компонент имеет очень малый атомный диаметр, то образуется твердый раствор внедрения. В этом случае энергозатраты на образование раствора оказываются меньшими, так как атомы растворимого компонента (например, углерода в железе) размещаются в междоузлии ячейки кристаллической решетки растворителя, не вытесняя атомов растворителя из узлов решетки. При ограниченной растворимости компонентов за пределами их растворимости образуются или смеси зерен ограниченных твердых растворов обоих компонентов друг в друге, или смеси зерен ограниченного раствора и химического соединения компонентов.
В твердых растворах замещения преобладающей связью между атомами является металлическая. В растворах внедрения вместе с металлической может возникать и ковалентная связь. Образующиеся при сплавлении двух компонентов химические соединения имеют строго определенный состав. Они представляют собой зерна со специфической кристаллической решеткой, отличной от решеток обоих компонентов. Ячейки решеток химических соединений имеют сложное строение. Связь между атомами в них сильнее и жестче металлической. Поэтому они являются очень твердыми и хрупкими веществами. Существует несколько видов химических соединений, отличающихся спецификой строения и свойств. Все существующие металлические сплавы можно разделить на четыре основных вида (рода): 1) смесь зерен компонентов; 2) неограниченные твердые растворы; 3) с ограниченной растворимостью компонентов; 4) с устойчивым химическим соединением.
10.Для изготовления деталей чистые металлы не применяются т.к. имеют низкую прочность, а сплавы обладают более выс.мех.св-ми. Сплавы состоят из 2 и более компонентов. Сплав состоящий из 2 компонентов называется двойным.
Сплавы можно получить многими способами, но на сегодняшний день широко используется металлургией, способ, когда компоненты расплавляют до жидкого состояния и затем подвергают кристаллизации. В зависимости от хим.состава соединение компонента их природного происхождения в результате кристаллизации могут образовывать механические смеси т.е. когда каждый компонент в процессе кристаллизации строит свою крист.решетку и не впускает ни один постор.атом.
2. твердые растворы –это когда кристаллические решетки одного компонента внедряются и размещаются в атомы второго компонента.
3. хим соединения –это когда обр.совершенно новая кристаллическая решетка сплав резко отличается по своим свойствам от своих компонентов, но обязательное условие должны соединяться между собой m молекула вещества А, с n молекулой вещества В.
Для характеристики изменения строения сплава в зависимости от t º и хим.состава строят диаграммы состояния. К диаграмме будут иметь разные фазы.
Фаза- это однородная часть системы отделенная от других фаз поверхностного раздела, при переходе через которую, хим. Состав или структура, изменяются скачкообразно. Двойные или бинарные сплавы образуются по одному из 4 типов отличающихся по степени растворимости компонентов друг в друге и фазовом составе.
Тип.
T н.к – у всех сплавов различная
Т к.к.- у всех одинаковая.
Свинец, сурьма, цинк, олово и др.
2 –тип. –компоненты неогр. раств. др. в др.
ТВ.раствор→крист.реш А←атом В
ß – крист.реш В←атом в-ва А.
Медь, никель, железо-никель, железо- хром и др.
3тип.-комп-ты раств. др. в др. с ограничением со сниж.t.
DF и EN раствор уменьш.со сниж.t. и уже из образовавшихся крист.твердого раствора вытисняет атомы раств-го компонента, они группируются и образуют вторичнуюкристализацию.
Железо углерод, алюм, медь, и др.
Тип-
Образуются сплавы содержащие новые хим.соед. в чистом виде Аm Bn или в виде структурной сост.другого сплава. Особенность в том, что св-ва хим.соед. близко не похожи на св-ва своих компонентов. Поэтому типу получают новейшие материала для новейшей техники, полупроводниковых мат, сверхпроводниковых, сверхтвердых материалов и др.
13.Фазы деограммы железо-угл.сплавов.мости от химического состояния и t будут образовываться следующие фазы:
Аустенит- А это твердый раствор углерода в чаше железо максимально содержится 2,14 % при t 1147 С, раствор уменьшается до 0,83% при t 727С и распадается на перлит. Аустенит не магнитен имеет высокую пластичность и вязкость.
Феррит– это твердый раствор углерода в альфа железе максимально 0,02 % и уменьшается до 0,002% t 200 С , мягкий, низкой прочности, магнитный, решетка ОЦК.
Цементит– это хим.соединение Fe3C содержит 6,67 % углерода, очень высокой твердости, хрупкости, магнитный и метостабильный, распадается с выделением графита. Различают: а) первичный цементит он образуется при переходе сплава из жидкого состояния в твердое. Б) вторичный цементит образуется при распаде аустенита. В) третичный выделяется из феррита с уменьшением раствора.
Графитсвободный углерод мягкий низкой прочности, электропроводный. В чугунах находится в различной форме: чешуйке, пластинке, хлопье, что будет влиять на свойство сплава.
При кристаллизации образуется две смеси фаз:
а) перлит(П)
феррит+цементит
образуется при распаде акстенита при t 727С и содержит углерод 0,83%. Может быть пластинчатый или зернистый, что также влияет на механические свойства сплавов, более прочный зернистый перрит.
Б)ледебурит (Л)
Л= Аустенит+ цементит 1
Образуется при t 1147 С и содержит углерод 4,3 %. Твердый, хрупкий. Ниже t 727 C , будет Л= П+ Ц 1