Теоретическое и практическое значение логики
Можно логично рассуждать, правильно строить свои умозаключения, опровергать доводы противника и не зная правил логики, подобно тому, как нередко люди правильно говорят, не зная правил грамматики языка. Но знание логики повышает культуру мышления, способствует четкости, последовательности и доказательности рассуждения, усиливает эффективность и убедительность речи.
Особенно важно знание основ логики в процессе овладения новыми знаниями, в обучении, в ходе подготовки к занятию, при написании сочинения, выступления, доклада; знание логики помогает заметить логические ошибки в устной речи и письменных произведениях других людей, найти более короткие и правильные пути опровержения этих ошибочных мыслей, не допускать ошибок в своем мышлении.
В условиях научно-технической революции и возрастающего потока научной информации особое значение приобретает задача рационального построения процесса обучения в средней школе, вузе, колледже и др. Экстенсивные методы, предполагающие расширение объема вновь усваиваемой информации, уступают место интенсивным, предполагающим рациональный отбор из всего потока новой информации важнейших, определяющих компонентов. Необходимым условием внедрения новых методов обучения является развитие логической культуры педагогов и учащихся -овладение методологией и методикой научного познания, усвоение рациональных методов и приемов доказательного рассуждения, формирование творческого мышления.
Логическая культура - не врожденное качество. Для ее развития необходимо ознакомление учителей, студентов педагогических вузов, педучилищ и педколледжей, а через них и учащихся с основами логической науки, которая в течение двухтысячелетнего развития накопила теоретически обоснованные и оправдавшие себя методы и приемы рационального рассуждения и аргументации. Логика способствует становлению самосознания, интеллектуальному развитию личности, помогает формированию у нее научного мировоззрения. Успешное решение сложных задач обучения и воспитания молодежи
в решающей степени зависит от учителя, от его личной убежденности, профессионального мастерства, эрудиции и культуры. Профессия учителя требует постоянного творчества, неустанной работы мысли и совершенствования ее культуры, без чего невозможно завоевание авторитета учителя у учащихся. Для улучшения подготовки учительских кадров рекомендуется расширить преподавание логики, изучение которой поможет поднять логическую культуру будущих учителей.
В науке, в полемике, в повседневной жизни, в обучении нам ежедневно приходится из одних истинных суждений выводить другие, опровергать ложные суждения или неправильно построенные доказательства. Сознательное следование законам логики дисциплинирует мышление, делает его более аргументированным, эффективным и продуктивным, помогает избежать ошибок, что особенно важно для учителя.
§ 3. Логика и язык
Предметом изучения логики являются формы и законы правильного мышления. Мышление есть функция человеческого мозга. Оно неразрывно связано с языком. Язык, по выражению К. Маркса, есть непосредственная действительность мысли. В ходе коллективной трудовой деятельности у людей возникла потребность в общении и передаче своих мыслей друг другу, без чего была невозможна сама организация коллективных трудовых процессов.
Функции естественного языка многочисленны и многогранны. Язык - средство повседневного общения людей, средство общения в научной и практической деятельности. Язык позволяет передавать накопленные знания, практические умения и жизненный опыт от одного поколения к другому, осуществлять процесс обучения и воспитания подрастающего поколения. Языку свойственны и такие функции: хранить информацию, быть средством познания, быть средством выражения эмоций. '
Язык является знаковой информационной системой, продуктом духовной деятельности человека. Накопленная информация передается с помощью знаков (слов) языка.
Речь может быть устной или письменной, звуковойили незвуковой (как, например, у глухонемых), речью внешней (для
других) или внутренней, речью, выраженной с помощью естественного или искусственного языка. С помощью научного языка, в основе которого лежит естественный язык, сформулированы положения философии, истории, географии, археологии, геологии, медицины (использующей наряду с “живыми” национальными языками и ныне “мертвый” латинский язык) и многих других наук. Язык - это не только средство общения, но и важнейшая составная часть культуры всякого народа.
На базе естественных языков возникли искусственные языки науки. К ним принадлежат языки математики, символической логики, химии, физики, а также алгоритмические языки программирования для ЭВМ, которые получили широкое применение в современных вычислительных машинах и системах. Языками программирования называются знаковые системы, применяемые для описания процессов решения задач на ЭВМ. В настоящее время усиливается тенденция разработки принципов “общения” человека с ЭВМ на естественном языке, чтобы можно было пользоваться компьютерами без посредников-программистов.
Знак - это материальный предмет (явление, событие), выступающий в качестве представителя некоторого другого предмета, свойства или отношения и используемый для приобретения, хранения, переработки и передачи сообщений (информации, знаний)'.
Знаки подразделяются на языковые и неязыковые. К неязыковым знакам относятся знаки-копии (например, фотографии, отпечатки пальцев, репродукции и т. д.), знаки-признаки, или знаки-показатели (например, дым - признак огня, повышенная температура тела - признак болезни), знаки-сигналы (например, звонок - знак начала или окончания занятия), знаки-символы (например, дорожные знаки) и другие виды знаков. Существует особая наука - семиотика, которая является общей теорией знаков. Разновидностями знаков являются языковые знаки, использующиеся в вышеперечисленных функциях. Одна из важнейших функций языковых знаков состоит в обозначенииими предметов. Для обозначения предметов служат имена.
________________________________
'См.: Философский энциклопедический словарь М., 1983, С. 191.
Имя - это слово или словосочетание, обозначающее какой-либо определенный предмет. (Слова “обозначение”, “именование”, “название” рассматриваются как синонимы). Предмет здесь понимается в весьма широком смысле: это вещи, свойства, отношения, процессы, явления и т. п. как природы, так и общественной жизни, психической деятельности людей, продукты их воображения и результаты абстрактного мышления. Итак, имя всегда есть имя некоторого предмета. Хотя предметы изменчивы, текучи, в них сохраняется качественная определенность, которую и обозначает имя данного предмета.
Имена делятся на:
1) простые (“книга”, “снегирь”, “опера”) и сложные, или описательные (“самый большой водопад в Канаде и США”, “планета Солнечной системы”). В простом имени нет частей, имеющих самостоятельный смысл, в сложном они имеются;
2) собственные, т.е. имена отдельных людей, предметов, событий (“П. И. Чайковский”, “Обь”), и общие - название класса однородных предметов, (например, “дом”, “действующий вулкан”).
Каждое имя имеет значение и смысл. Значением имени является обозначаемый им предмет'. Смысл (или концепт) имени - это способ, какимимя обозначает предмет, т.е. информация о предмете, которая содержится в имени. Поясним это на примерах. Один и тот же предмет может иметь множество разных имен (синонимов). Так, например, знаковые выражения “4”, “2 + 2”, “9 - 5” являются именами одного и того же предмета - числа 4. Разные выражения, обозначающие один и тот же предмет, имеют одно и то же значение, но разный смысл (т е. смысл выражений “4”, “2 + 2” и “9 - 5” различен).
Приведем другие примеры, разъясняющие, что такое значение и смысл имени. Такие знаковые выражения, как “великий русский поэт Александр Сергеевич Пушкин (1799-1837)”, “автор романа в стихах “Евгений Онегин”, “автор стихотворения, обращенного к Анне Петровне Керн, “Я помню чудное мгновенье”, “поэт,
_________________________
'Вместо слова “значение” в логической литературе употребляют другие (тождественные, синонимические) названия: чаще всего “денотат”, иногда “десигнат”, “номинат” или “референт”.
смертельно раненный на дуэли с Ж. Дантесом”, “автор исторической работы “История Пугачева” (1834)”, имеют одно и то же значение (они обозначают поэта А. С. Пушкина), но различный смысл.
Такие языковые выражения, как “самое глубокое озеро мира”, “пресноводное озеро в Восточной Сибири на высоте около 455 метров”, “озеро, имеющее свыше 300 притоков и единственный исток - реку Ангару”, “озеро, глубина которого 1620 метров”, имеют одно и то же значение (озеро Байкал), но различный смысл, поскольку эти языковые выражения представляют озеро Байкал с помощью различных его свойств, т. е. дают различную информацию о Байкале.
Соотношение трех понятий: “имя”, “значение”, “смысл” - схематически можно изобразить таким образом:
Значение — обозначаемый именем предмет ими класс предметов.
Смысл— способ, каким имя обозначает предмет (информация о предмете).
Имя— языковое изображено,
обозначающее предмет.
рис. 1
Эта схема пригодна, если имя является не только собственным, т. е. приложимым к одному предмету (“число 4”, “А. С. Пушкин”, “Байкал”), но и общим (например, “человек”, “озеро”). Тоща вместо единичного предмета значением имени будет класс однородных предметов (например, класс озер или класс собак и т. д.), и схема останется в силе при данном уточнении, при этом вместо смысла будет содержание понятия.
В логике различают выражения, которые являются именными функциями, и выражения, являющиеся пропозициональными функциями. Примерами первых являются: “х2+ I”, “отец у”, “разность чисел z и 5”; примерами вторых являются: “х- поэт”, “7 +у =10”, “х > у - 7”. Рассмотрим эти два вида функций.
Именная функция - это выражение, которое при замене переменных постоянными превращается в обозначение предмета. Возьмем именную функцию “отец у”. Поставив вместо у имя “писатель Жюль Верн”, получим “отец писателя Жюля Верна” - имя предмета (в данном случае - имя человека).
Именная функция - это такое выражение, которое не является непосредственно именем ни для какого предмета и нуждается в некотором восполнении для того, чтобы стать именем предмета. Так, выражение х2 - 1 не обозначает никакого предмета, но если мы его “восполним”, поставив, например, на место х имя числа 3 (обозначающее это число цифру), то получим выражение З2- 1, которое является уже именем для числа 8, т. е. для некоторого предмета. Аналогично выражение х2 + у2 не обозначает никакого предмета, но при подстановке на место -x и y каких-нибудь имен чисел, например “4” и “1”, превращается в имя числа 17. Такие, нуждающиеся в восполнении выражения, как x2-1, х2 + у2 , и называют функциями - первая от одного, вторая от двух аргументов.
Пропозициональной функцией называется выражение, содержащее переменную и превращающееся в истинное или ложное высказывание при подстановке вместо переменной имени предмета из определенной предметной области
Приведем примеры пропозициональных функций: “z - город”; “x - советский космонавт”; “у - четное число”; “х + у = 10”; “х3- 1 = 124”.
Пропозициональные функции делятся на одноместные, содержащие одну переменную, называемые свойствами (например, “x - композитор”, “х - 7 == 3”, “z -гвоздика”), и содержащие две и более переменных, называемые отношениями (например, “х > у”; “х - z = 16”; “объем куба x равен объему куба у”).
Возьмем в качестве примера пропозициональную функцию “х -нечетное число” и, подставив вместо х число 4, получим высказывание “4 - нечетное число”, которое ложно, а подставив число 5, получим истинное высказывание “5 - нечетное число”.
Разъясним это на конкретных примерах. Необходимо указать, какие из приведенных выражений являются именными функциями и какие пропозициональными; определить их местность, т. е. число входящих в выражение переменных, и получить из них имена или предложения, выражающие суждения (истинные или ложные).
а) “разность чисел 100 и х”. Это - именная одноместная функция; например, 100-6 есть имя предмета, имя числа 94.
б) “х2 +у”. Это - именная двухместная функция; при подстановке вместо х числа 5 и вместо у числа 7 превращается в имя предмета, имя числа 32.
в) “у -известный полководец”. Это пропозициональная одноместная функция; при подстановке вместо y имени “Александр Васильевич Суворов, родившийся 24 ноября 1730 г.”, получим истинное суждение: “Александр Васильевич Суворов, родившийся 24 ноября 1730 г., - известный полководец”, выраженное в форме повествовательного предложения.
г) “z является композитором, написавшим оперы х и y”. Это - пропозициональная трехместная функция. Она превращается в ложное суждение при подстановке вместо z имени “Бизе”, вместо х - “Аида”, а вместо у - “Травиата”. Суждение “Бизе является композитором, написавшим оперы “Аида” и “Травиата”, выраженное в форме повествовательного предложения, является ложным, потому что обе эти оперы написал не Бизе, а Верди.
Понятие пропозициональной функции широко используется в математике. Все уравнения с одним неизвестным, которые школьники решают, начиная с первого класса, представляют собой одноместные пропозициональные функции, например, х + 2 = 7; 10 -х = 4. Неравенства, содержащие одну или несколько переменных, также являются пропозициональными функциями. Например, х < 7 или х2 -у > 0.