А нормальные напряжения равны полусуммам

что соответствует координатам центров окружностей 1, 2 и 3 (см. рис. 8). Наибольшее из значений τi (i = 1, 2, 3) называется максимальным касательным напряжением и обозначается τmax. Если условия (1.39) выполняются, то τmax = τ2.

Так как различные тела обладают различными механическими свойствами по отношению к сдвигу и равномерному всестороннему сжатию, удобно компоненты тензора напряжения представить в виде суммы

где Sij—компоненты тензора, характеризующего касательные напряжения в данной точке и называемого девиатором напряжений.

Нормальные составляющие девиатора обозначают Sii = σii — σ, а касательные составляющие sij = σij (i≠j).

Главные направления девиатора напряжений (Sij) и тензора напряжений (σij) совпадают, а главные значения si отличаются от σi, на величину среднего (гидростатического) давления и определяются кубическим уравнением

-s3 + A1s+B1=0,

все корни которого также вещественны.

Инварианты A1 и В1 легко получить из формул (1.37), если заменить σij на sij и σi на si.

Неотрицательную величину

(1.40)

называют интенсивностью касательных напряжений.

Часто рассматривают приведенное напряжение или интенсивность напряжений

(1.41)

Величина Т равна нулю только в том случае, когда напряженное состояние есть состояние гидростатического давления.

Доказывается, что с погрешностью не более 7% имеет место равенство

Т ≈ 1,08 τmax.

Для характеристики вида напряженного состояния, подобно характеристике деформационного состояния, используется параметр, введенный Лоде и Надаи:

который изменяется в пределах от —1 до +1. Он указывает на взаимоотношение главных нормальных напряжений, в частности на положение точки σ2 на диаграмме Мора. Для одних и тех же величин μσ диаграммы Мора подобны.

Для чистого растяжения элемента (σ1>0, σ2= σ3 = 0) μσ= —1, для чистого сжатия 1 = σ2 = 0, σ3<0) μσ= 1, для сдвига (σ1>0, σ2=0, σ3= σ1) μσ= 0, для гидростатического давления 1 = σ2 = σ3) μσ не имеет смысла.

§ 4. ИСТОЧНИК И ИСТОК В ПРОСТРАНСТВЕ

Рассмотрим еще один важный для дальнейшего пример потенциального течения. Пусть

(1.42)

где , a Q = const или Q = Q (t). Ясно, что поверхностями равного потенциала j = const являются в этом случае поверхности r = const, т. е. концентрические сферы с центром в начале координат. Скорость v = grad j ортогональна к этим сферам, т. е. направлена по радиусам. Линии тока являются лучами, выходящими из начала координат.

Пусть Q > 0; тогда, так как grad j направлен в сторону роста j, то v направлена по r. Если Q < 0, то v направлена по - r (рис. 6). Величина скорости равна:

|(grad jr)| = .

 

 
 

Рис. 6

 

Скорость стремится к нулю при r ® ¥ и к бесконечности при r ® 0. Точки нуль и бесконечность являются критическими. При Q > 0 (1) имеем

вытекание жидкости из начала координат во всех направлениях — это течение называется точечным пространственным источником.

При Q < 0 (2) — втекание жидкости в начало координат — сток. В первом случае в бесконечно удаленной точке имеем источник, а во втором — сток.

Вычислим объем жидкости, протекающей за единицу времени через поверхность сферы S некоторого радиуса r с центром в начале координат. Через элемент сферы ds за единицу времени протекает объем жидкости v ds, а через всю сферу

(расход жидкости)

( v можно вынести за знак интеграла, так как v = const на поверхности сферы). Заметим, что первые два равенства верны всегда, когда v = v (r) и v ортогональна к поверхности сферы S. Вычисленный объем жидкости не зависит от r. Таким образом, несмотря на то, что на разных сферах разного радиуса с центром в начале координат скорости разные, постоянная Q в потенциале j (1.42) является объемом жидкости протекающей за единицу времени через каждую такую сферу. Величина Q называется расходом или мощностью источника (стока).

Если Q = const, то источник или сток имеет постоянную мощность;если Q = Q (t) — то переменную. Если в некоторый момент времени Q меняется в начале координат, то мгновенно измеряется поле скоростей во всем пространстве. Сигналы изменение Q сразу сказываются на всем поле скоростей, что, конечно, не может иметь места в действительности. Возмущения должны распространяться с некоторой конечной скоростью. Поэтому рассмотренное поле скоростей является определенной идеализацией, которая может достаточно хорошо отражать действительность только в том случае, когда рассматриваются течения жидкости с большой скоростью распространения возмущений. Во многих случаях можно считать, что такой жидкостью является, например, вода, в которой скорость распространения слабых возмущений 1450 м/сек.

Греческий алфавит

Α α – альфа Ν ν – ни (ню)

Β β – бэта Ξ ξ – кси

Γ γ – гамма Ο ο – омикрон

Δ δ – дельта Π π – пи

Ε ε – эпсилон Ρ ρ – ро

Ζ ζ – дзэза Σ σ – сигма

Η η – эта Τ τ – тау

Θ θ – тэта Υ υ – ипсилон

Ι ι – иота Φ φ – фи

Κ κ – каппа Χ χ – хи

Λ λ – ламбда Ψ ψ – пси

Μ μ – ми (мю) Ω ω – омега

- набла (от греч.-ναβλα - арфа) – знак действия над полем (оператор) –

этот оператор Гамильтона векторно-дифференциальный