Ответ: а) 0,0104; б) 0,625.
190. Всхожесть семян данного растения равна 90 %. Найти вероятность того, что из четырех посеянных семян взойдут: а) три; б) не менее трех.
Ответ:а) 0,2916; б)0,9477
191. Вероятность того, что станок в течение часа потребует внимания рабочего, равна 0,6. Предполагая, что неполадки в станках независимы, найти вероятность того, что в течение часа внимания рабочего потребует какой-либо станок из четырех, обслуживаемых им.
Ответ0,1536
192. Для нормальной работы автобазы на линии должно быть не менее восьми машин, а имеется их десять. Вероятность невыхода каждой автомашины на линию равна 0,1. Найти вероятность нормальной работы автобазы на ближайший день.
Ответ:0,9298
193.Сколько раз надо подбросить игральный кубик, чтобы наивероятнейшее число выпадений двойки было равно 32?
Ответ:от 191 до 197
194.Какова вероятность наступления события А в каждом испытании, если наивероятнейшее число наступлений события А в 120 испытаниях равно 32?
Ответ:
195.Какое минимальное число опытов достаточно провести, чтобы с вероятностью, не меньшей, чем а(0 < а < 1), можно было бы ожидать наступление события А хотя бы один раз, если вероятность события А в одном опыте равна р.
Ответ:n0=80
196.Мишень состоит из 3 попарно непересекающихся зон. При одном выстреле по мишени вероятность попадания в первую зону для данного стрелка равна 0,5. Для второй и третьей зон эта вероятность равна соответственно 0,3 и 0,2. Стрелок производит 6 выстрелов по мишени. Найти вероятность того, что при этом окажется 3 попадания в первую зону, 2 попадания во вторую и 1 попадание в третью зону.
Ответ:0,135
197.Применяемый метод лечения приводит к выздоровлению в 90 % случаев. Какова вероятность того, что из 5 больных поправятся не менее 4?
Ответ:0,918
198.Два равносильных шахматиста играют в шахматы. Что вероятнее: а) выиграть одну партию из двух или две партии из четырех? б) выиграть не менее двух партий из четырех или не менее трех партий из пяти? Ничьи во внимание не принимаются.
Ответ:0,6875
199.Проверка качества выпускаемых деталей показала, что в среднем брак составляет 7,5 %. Найти наиболее вероятное число стандартных деталей в партии из 39 штук, отобранных наудачу.
Ответ:36 или 37
200. При стрельбе по мишени вероятность попадания при одном выстреле равна 0,7. При каком числе выстрелов наивероятнейшее число попаданий равно 16?
Ответ: 22 или 23
201. Найти вероятность того, что при 10 подбрасываниях
монеты герб выпадет 5 раз.
Ответ:0.246
202. Монетку подбрасывают 5 раз. Случайная величина X-число выпадений цифры. Возможные значения величины X: х0 = 0, х1 = 1, х2= 2, хъ =3, х4= 4, х5=5.
Записать закон распределения случайной величины X.
Ответ:
X | ||||||
P | 1/32 | 5/32 | 10/32 | 10/32 | 5/32 | 1/32 |
203. Монета подбрасывается 10 раз. Какова вероятность того, что герб
выпадет ровно 3 раза?
Ответ:15/128
204.Найдите вероятность того что среди взятых наугад пяти деталей
две стандартные, если вероятность детали быть стандартной равна 0,9.
Ответ:0,081
205. Чему равно наивероятнейшее число нестандартных среди 500 де
талей, если вероятность для каждой из них быть нестандартной равна
0,035?
Ответ:17
206.Вероятность того, что покупателю необходима мужская обувь 41-
го размера, равна 0,25. Найдите вероятность того, что из шести покупателей по крайней мере двум необходима обувь 41-го размера.
Ответ: 0,466
207.Применяемый метод лечения приводит к выздоровлению в 80 %
случаев. Какова вероятность того, что из 5 больных поправятся 4?
Ответ:0,74
208.Доля изделий высшего сорта на данном предприятии составляет
40 %. Чему равно наивероятнейшее число изделий высшего сорта в случайно отобранной партии из 120изделий?
Ответ:48
209.Вероятность попадания в мишень при одном выстреле равна0,7.
Найдите вероятность наивероятнейшего числа попаданий, если произведено 9 выстрелов.
Ответ:0,267
210.Найти дисперсию дискретной случайной величины, имеющей распределение Пуассона.
Ответ:a
211. Производятся независимые испытания, в каждом из которых событие А может появиться с вероятностью 0,002. Какова вероятность того, что при 1000 испытаниях событие А появится 5 раз?
Ответ:0,0361
212. Вероятность изготовления детали 0,004.Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.
Ответ:0,1562
213. Прядильщица обслуживает 1000 веретен. Вероятность обрыва нити на одном веретене в течение 1 мин. равна 0,002. Найти вероятность того, что в течение 1 мин. обрыв произойдет более чем на трех веретенах.
Ответ:0,1428
214.Радиоаппаратура состоит из 1000 электроэлементов. Вероятность отказа одного элемента в течение одного года работы равна 0,001 и не зависит от состояния других элементов. Какова вероятность а) отказа двух элементов; б) отказа не менее двух элементов за год?
Ответ:а)0,1831; б) 0,2642
215.Телефонная станция обслуживает 400 абонентов. Для каждого абонента вероятность того, что в течение часа он позвонит на станцию, равна 0,01.
Найти вероятности следующих событий: а) в течении часа 5 абонентов позвонят на станцию ; б) в течение часа не более 4 абонентов позвонят на станцию ; в) в течение часа не менее 3 абонентов позвонят на станцию .
Ответ: а) 0,1563, б) 0,6289, в) 0,7619
216.Производятся независимые испытания, в каждом из которых событие А может появиться с вероятностью 0,01. Найти вероятность того, что при 100 испытаниях событие А появится а) 1 раз; б) 3 раза ; в) 5 раз ; г) не появится ни разу.
Ответ: а)0,3679; б) 0,1839; г) 0,0613; в) 0,0153; г) 0,0005.
217.На факультете обучается 500 студентов. Какова вероятность того, что 1 сентября является днем рождения одновременно для а) одного б) двух в) трех г) ни одного студента данного факультета.
Ответ: а)0,3481; б) 0,2385; в) 0,1089; г) 0,2541;
218.При введении вакцины против полиомиелита иммунитет создается в 99,99% случаев. Какова вероятность того, что из 1000 вакцинированных детей заболеет а)1; б) 2; в) 3; г) 4 ребенка?
Ответ:а)0,3679; б)0,1839; в)0,0613; г)0,0153.
219. Производятся независимые испытания, в каждом из которых со
бытие А может появиться с вероятностью 0,0015. Какова вероятность того, что при 2000 испытаниях событие А появится 3 раза?
Ответ:0,2242.
220. Известно, что в принятой для сборки партии из 1000 деталей
имеются 4 дефектных. Найдите вероятность того, что среди 50 наугад
взятых деталей нет дефектных.
Ответ: 0,8187
221. Завод отправил на базу 5000 качественных изделий. Вероятность
повреждения каждого изделия в пути равна 0,0002. Найдите вероятность
того, что среди 5000 изделий в пути будет повреждено: а) ровно 3 изделия;
б) ровно одно изделие; в) не более 3 изделий; г) более 3 изделий.
Ответ:а)0,06313; 6)0,367879; в) 0,981011; г) 0,018989.
222. Магазин получил 1000 бутылок минеральной воды. Вероятность
того, что при перевозке бутылка окажется разбитой, равна 0,003. Найди
те вероятность того, что магазин получит: а) хотя бы одну; б) менее 2;
в) ровно 2; г) более 2 разбитых бутылок.
Ответ: а) 0,95; 6)0,1992; в) 0,224; г) 0,577.
223. Независимые случайные величины X, У, Z распределены по закону
Пуассона соответственно с параметрами а= 1, b = 2, с = 3.
Найдите закон распределения их суммы.
Ответ:
224.Независимые случайные величины X, Y, Z распределены по закону
Пуассона, причем М(Х) = a, M(Y) = b, М(Z) = с. Найдите закон распределения их суммы и М(Х + Y+Z).
Ответ:
225. Независимые случайные величины Хк (к = 1,2,..., т) распределены по закону Пуассона, причем М(Хк) = ак. Запишите закон распределения их суммы.
Ответ:
226.Вероятность того, что электролампочка, изготовленная данным заводом, является бракованной, равна 0,02. Дня контроля отобрано наугад 1000 лампочек. Оценить вероятность того, что частота бракованных лампочек в выборке отличается от вероятности 0,02 менее чем на 0,01.
Ответ:0,9576
227.Всхожесть семян данного растения равна 0,9. Найти вероятность того, что из 900 посаженных семян число проросших заключено между 790 и 830.
Ответ:0,9736
228.Производство дает 1 % брака. Какова вероятность того, что из взятых на исследование 1100 изделий выбракованных будет не более 17?
Ответ:0,9651
229.Вероятность изготовления детали первого сорта на данном станке равна 0,8. Найти вероятность того, что среди наугад взятых 100 деталей окажется 75 деталей первого сорта.
Ответ:0,04565
230. Вероятность появления события в каждом из 100 независимых испытаний постоянна и равна0,8. Найти вероятность того, что событие появится: а) не менее 70 и не более 85 раз; б) не менее 70 раз; в) не более 69 раз.
Ответ:а) 0,8882; б) 0,9938; в)0,0062.
231. Вероятность появления события в каждом из 900 независимых испытаний равна 0,5. Найти вероятность того, что относительная частота появления события отклонится от его вероятности по модулю не больше чем на 0,02.
Ответ:0,7698.
232. Посажено 600 семян кукурузы с вероятностью 0,9 прорастания для каждого семени. Найти границу модуля отклонения частоты взошедших семян от вероятности р = 0,9, если эта граница должна быть гарантирована с вероятностью Р = 0,995.
Ответ :0,0034
233. С конвейера сходит в среднем 85 % изделий первого сорта. Сколько изделий необходимо взять, чтобы с вероятностью 0,997 отклонение частоты изделий первого сорта в них от вероятности р = 0,85 по модулю не превосходило 0,01 ?
Ответ:11171
234. Вероятность появления положительного результата в каждом из п опытов равна 0,9. Сколько нужно произвести опытов, чтобы с вероятностью 0,98 можно было ожидать, что не менее 150 опытов дадут положительный результат.
Ответ:180.
235.Игральный кубик подбрасывают 80 раз. Найти с вероятностью 0,99 границы, в которых будет заключено число т выпадений шестерки
Ответ:5 ≤ т ≤ 22.
236. Обследуются 500 изделий продукции, изготовленной на предприятии, где брак составляет 2%. Найти вероятности того, что
а) среди них окажется ровно 10 бракованных;
б) число бракованных в пределах от 10 до 20.
Ответ:а) 0,127; б) 0,499.
237.Оценить вероятность события
Ответ:0,354
238. Вероятность изготовления детали высшего сорта на данном станке равна 0,4. Найдите вероятность того, что среди наудачу взятых 26
деталей половина окажется высшего сорта.
Ответ:0,093
239. Сколько раз с вероятностью 0,0484 можно ожидать появления со
бытия в 100 независимых испытаниях, если вероятность его появления в
отдельном испытании равна 0,5?
Ответ:55
240. Игральный кубик подбрасывают 800 раз. Какова вероятность того, что число очков, кратное трем, выпадает не меньше 260 и не больше
274 раз?
Ответ:0,4
241. Вероятность появления события А в опыте равна 0,2. Опыт повторили
независимым образом 400 раз. Какова вероятность того, что при этом событие А произойдет а) 70 раз; б) 80 раз; в) не менее 70, но не более 90 раз;
г) не менее 76, но не более 82 раз; д) не менее 78 раз; е) не более 78 раз?
Ответ:а) 0,023; б) 0,05; в) 0,789; г) 0,92; д) 0,6; е) 0,4.
242.Вероятность появления события в каждом из независимых испытаний равна 0,8. Сколько нужно произвести испытаний, чтобы с вероятностью 0,9 можно было ожидать, что событие А появится не менее 75 раз?
Ответ:100
243.Вероятность появления события в каждом из 10000 независимых испытаний равна 0,75. Найдите вероятность того, что относительная Частота появления события отклонится от его вероятности по модулю не
более чем на 0,01
Ответ:0,979