Метод интегрирования подведением под знак дифференциала

 

Функция называется первообразной для функции на интервале , конечном или бесконечном, если в любой точке этого интервала функция дифференцируема и имеет производную .

Совокупность всех первообразных для функции , определенных на интервале , называется неопределенным интегралом от функции на этом интервале и обозначается символом

.

Метод подведения под знак дифференциала следует из свойства инвариантности неопределенного интеграла.

Пусть дан интеграл . Справедливо равенство

,

где – некоторая непрерывно дифференцируемая функция.

 

Таблица интегралов

1. 8.
2. 9.
3. 10.
4. 11.
5. 12.
6. 13.
7. 14.
15.

 

При интегрировании методом подведения под знак дифференциала необходимо иметь в виду следующие равенства:

 

В общем случае

.