Анализ электрокардиограммы.
Регистрация ЭКГ осуществляется с помощью биполярных и униполярных отведений. Биполярными являются стандартные отведения, предложенные Эйнтховеном, а униполярными усиленные отведения от конечностей.Стандартных отведений три: I-е отведение – правая и левая рука, II-е правая рука и левая нога, III-е – левая рука и левая нога.Зубцы ЭКГ обозначают буквами P, Q, R, S, T и измеряют в мм или мВ, а продолжительность ( ширина) в секундах. Расстояние между 2 зубцами также измеряется в секундах и называется интервалом. Продолжительность и амплитуда отдельных зубцов, интервалов и комплексов ЭКГ характеризует 2 основных физиологических свойств сердца : возбудимость и проводимость. ЭКГ состоит из 3 направленных вверх зубцов P, R, T и 2 направленных вниз отрицательных зубцов Q и S. Различают сегменты PQ, QRS, QT, T-R, R-R.Сегмент Т-Р соответствует периоду отсутствия разности потенциалов на поверхности тела и может быть принят за уровень изоэлектрической или нулевой линии.Принято временные интервалы ЭКГ измерять во 2 стандартном отведении.Одним из важных показателей ЭКГ является частота ритма сердечных сокращений.Регулярность сердечных сокращений оценивается при сравнении продолжительности интервалов R-R. Регулярный или правильный ритм сердца диагностируется в том случае , если продолжительность этих интервалов одинакова и разброс полученных величин не превышает +-10%.ЧСС определяется при правильном ритме по формуле:ЧСС=60/R-R, где R-R длительность интервала (продолжительность сердечного цикла), выраженная в секундах. При неправильном ритме определяют мин и макс ЧСС. Мин ЧСС определяется по продолжительности наибольшего интервала R-R, а макс ЧСС – по наименьшему.Установлена математическая зависимость между частотой сокращений сердца и длительностью интервала Q-T. Это так называемая должная электрическая систола. Она выражается формулой Базетта:Q -Т должн= K√R-R,где К - константа, равная для мужчин 0,37, а для женщин - 0,39.При нормальном состоянии сердца расхождения между фактической и должной систолой составляют не более 15% в ту или другую сторону. Если эти величины укладываются в данные параметры, то это говорит о нормальном распространении волн возбуждения по сердечной мышце.Распространение возбуждения по сердечной мышце характеризует не только длительность электрической систолы, но и так называемый систолический показатель (СП), представляющийотношение длительности электрической систолы к продолжительности всего сердечного цикла (в процентах):CП=(Q-T:R-R)*100%R-R Отклонение систолического показателя у здоровых людей но сравнению с должной величиной не превышает 5% в обе стороны. Интервал Q-T и СП - важные показатели электрокардиограммы.По ЭКГ определяется источник возбуждения, или так называемый водитель ритма. В норме синусовый ритм, который характеризуется:1) наличием во II отведении положительных зубцов Р, предшествующих каждому комплексу QRS;2) постоянной одинаковой формой всех зубцов Р в одном и том же отведении.Форма и величина зубцов комплекса QRS в стандартных и усиленных однополюсных отведениях от конечностей зависят от положения электрической оси сердца. Различные варианты положения средней электрической оси сердца: 1) нормальное положение, когда угол оси составляет от +30° до +69°; 2) вертикальное положение - угол а от +70° до +90°; 3) горизонтальное положение - угол а от 0° до +29°;У здорового человека электрическая ось сердца располагается обычно в секторе от 0° до +90°.
3. Минутный и ударный объем сердца. Особенности сердечной мышцы. Закон сердца и его ограниченность.
Ударный или систолический объем сердца (УО) — количество крови, выбрасываемое желудочком сердца при каждом сокращении, минутный объем (МОК) — количество крови, выбрасываемое желудочком в минуту. Величина УО зависит от объема сердечных полостей, функционального состояния миокарда, потребности организма в крови. Минутный объем прежде всего зависит от потребностей организма в кислороде и питательных веществах. Так как потребность организма в кислороде непрерывно изменяется в связи с изменяющимися условиями внешней и внутренней среды, то величина МОК сердца является весьма изменчивой. Изменение величины МОК происходит двумя путями:через изменение величины УО; через изменение частоты сердечных сокращений.Существуют разнообразные методы определения ударного и минутного объемов сердца: газоаналитический, методы разведения красителя, радиоизотопный и физико-математический. Физико-математические методы в детском возрасте имеют преимущества перед остальными вследствие отсутствия вреда или какого-либо беспокойства для исследуемого, возможности сколь угодно частых определении этих параметров гемодинамики. Величина ударного и минутного объемов с возрастом увеличивается, при этом УО изменяется более заметно, чем минутный, так как с возрастом ритм сердца замедляется. У новорожденных УО равен 2,5 мл, в возрасте 1 года —10,2 мл, 7 лет — 23 мл, 10 лет — 37 мл 12 лет — 41 мл, от 13 до 16 лет — 59 мл (С. Е. Советов, 1948; Н. А. Шалков, 1957). У взрослых УО равен 60—80 мл. Показатели МОК, отнесенные к массе тела ребенка (на 1 кг массы), с возрастом не увеличиваются, а, наоборот, уменьшаются. Таким образом, относительная величина МОК сердца, характеризующая потребности организма в крови, выше у новорожденных и у детей грудного возраста.Минутный объем (МО) определяется количеством крови, выбрасываемым из каж дого желудочка при каждом сокращении (ударный объем, УО), и количеством сердечных сокращений в минуту (частота сердечных сокращений, ЧСС). Математически это выражается следующим образом: МО = ЧСС х УО * Из данной зависимости вытекает, что все факторы, влияющие на минутный объем сердца, должны воздействовать путем изменения или частоты сердечных сокращений, или ударного объема Факторы, влияющие на частоту сердечных сокращений, осуществляют это, изме няя диастолическую деполяризацию клеток водителя ритма, как это обсуждалось в главе 3 (рис 3-6) Вспомним, что изменение активности симпатических и парасимпа тических нервов, оканчивающихся на клетках SA узла, является наиболее важным регулятором частоты сердечных сокращений, Усиление симпатической активности увеличивает частоту сердечных сокращений, в то время как увеличение парасимпати ческой активности уменьшает частоту сердечных сокращений. Эти нервные импульсы оказывают непосредственное и немедленное воздействие (в пределах одного сокраще ния) и поэтому могут обеспечить очень быструю регуляцию минутного объема.Ударный и минутный объемы сердца практически одинаковы у мальчиков и у девочек в возрасте от 7 до 10 лет. С 11 лет оба показателя нарастают как у девочек, так и у мальчиков, по у последних они увеличиваются более значительно (МОК достигает к 14—16 годам у девочек 3,8 л, а у мальчиков — 4,5 л). Таким образом, половые различия рассматриваемых показателей гемодинамики выявляются после 10 лет. Кроме ударного и минутного объемов, гемодинамику характеризует сердечный индекс (СИ — отношение МОК к поверхности тела), СИ варьирует у детей в широких пределах — от 1,7 до 4,4 л/м2, при этом связи его с возрастом не выявляется (средняя величина СИ по возрастным группам в пределах школьного возраста приближается к 3,0 л/м2).Физиологаческие особенности сердечной мышцы. К основным особенностям сердечной мышцы относятся автоматия, возбудимость, проводимость, сократимость, рефрактер-ность.Автоматия сердца — способность к ритмическому сокращению миокарда под влиянием импульсов, которые появляются в самом органе. В состав сердечной поперечнополосатой мышечной ткани входят типичные сократительные мышечные клетки — кардиомиоциты и атипические сердечные миоциты (пейсмекеры), формирующие проводящую систему сердца, которая обеспечивает автоматизм сердечных сокращений и координацию сократительной функции миокарда предсердий и желудочков сердца. Первый синусно-предсердный узел проводящей системы является главным центром автоматизма сердца — пейсмекером первого порядка. От этого узла возбуждение распространяется на рабочие клетки миокарда предсердий и по специальным внутрисердечным проводящим пучкам достигает второго узла — предсердно-желудочкового (атриовентрикулярного), который также способен генерировать импульсы. Этот узел является пейсмекером второго порядка. Возбуждение через предсердно-желудо-ковый узел в нормальных условиях возможно только в одном направлении. Ретроградное проведение импульсов невозможно. Третий уровень, который обеспечивает ритмичную деятельность сердца, расположен в пучке Гиса и волокнах Пуркине. Центры автоматики, расположенные в проводящей системе желудочков, называются пейсмекерами третьего порядка. В обычных условиях частоту активности миокарда всего сердца в целом определяет синусно-предсердный узел. Он подчиняет себе все нижележащие образования проводящей системы, навязывает свой ритм. Необходимым условием для обеспечения работы сердца является анатомическая целостность его проводящей системы. Если в пейсмекере первого порядка возбудимость не возникает или блокируется его передача, роль водителя ритма берет на себя пейсмекер второго порядка. Если же передача возбудимости к желудочкам невозможна, они начинают сокращаться в ритме пейсмекеров третьего порядка. При поперечной блокаде предсердия и желудочки сокращаются каждый в своем ритме, а повреждение водителей ритма приводит к полной остановке сердца.Возбудимость сердечной мышцы возникает под влиянием электрических, химических, термических и других раздражителей мышцы сердца, которая способна переходить в состояние возбуждения. В основе этого явления лежит отрицательный электрический потенциал в первоначальном возбужденном участке. Как и в любой возбудимой ткани, мембрана рабочих клеток сердца поляризована. Снаружи она заряжена положительно, а внутри отрицательно. Это состояние возникает в результате разной концентрации Na+ и К+ по обе стороны мембраны, а также в результате разной проницаемости мембраны для этих ионов. В состоянии покоя через мембрану кардиомиоцитов не проникают ионы Na+, а только частично проникают ионы К+. Вследствие диффузии ионы К+, выходя из клетки, увеличивают положительный заряд на ее поверхности. Внутренняя сторона мембраны при этом становится отрицательной. Под влиянием раздражителя любой природы в клетку поступает Na+. В этот момент на поверхности мембраны возникает отрицательный электрический заряд и развивается реверсия потенциала. Амплитуда потенциала действия для сердечных мышечных волокон составляет около 100 мВ и более. Возникший потенциал деполяризует мембраны соседних клеток, в них появляются собственные потенциалы действия — происходит распространение возбуждения по клеткам миокарда. Потенциал действия клетки рабочего миокарда во много раз продолжительнее, чем в скелетной мышце. Во время развития потенциала действия клетка не возбуждается на очередные стимулы. Эта особенность важна для функции сердца как органа, так как миокард может отвечать только одним потенциалом действия и одним сокращением на повторные его раздражения. Все это создает условия для ритмичного сокращения органа. Таким образом происходит распространение возбуждения в целом органе. Этот процесс одинаков в рабочем миокарде и в водителях ритма. Возможность вызвать возбуждение сердца электрическим током нашла практическое применение в медицине. Под влиянием электрических импульсов, источником которых являются электростимуляторы, сердце начинает возбуждаться и сокращаться в заданном ритме. При нанесении электрических раздражении независимо от величины и силы раздражения работающее сердце не ответит, если это раздражение будет нанесено в период систолы, что соответствует времени абсолютного рефракторного периода. А в период диастолы сердце отвечает новым внеочередным сокращением — экстрасистолой, после которой возникает продолжительная пауза, называемая компенсаторной.Проводимость сердечной мышцы заключается в том, что волны возбуждения проходят по ее волокнам с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8—1,0 м/с, по волокнам мышц желудочков — 0,8—0,9 м/с, а по специальной ткани сердца — 2,0—4,2 м/с. По волокнам скелетной мышцы возбуждение распространяется со скоростью 4,7—5,0 м/с.Сократимость сердечной мышцы имеет свои особенности в результате строения органа. Первыми сокращаются мышцы предсердий, затем сосочковые мышцы и субэндокардиальный слой мышц желудочков. Далее сокращение охватывает и внутренний слой желудочков, которое обеспечивает тем самым движение крови из полостей желудочков в аорту и легочный ствол. Изменения сократительной силы мышцы сердца, возникающие периодически, осуществляются при помощи двух механизмов саморегуляции: гетерометрического и гомеометрического. В основе гетерометрического механизма лежит изменение исходных размеров длины волокон миокарда, которое возникает при изменении притока венозной крови: чем сильнее сердце расширено во время диастолы, тем оно сильнее сокращается во время систолы (закон Франка— Старлинга). Объясняется этот закон следующим образом. Сердечное волокно состоит из двух частей: сократительной и эластической. Во время возбуждения первая сокращается, а вторая растягивается в зависимости от нагрузки.Гомеометрический механизм основан на непосредственном действии биологически активных веществ (таких, как адреналин) на метаболизм мышечных волокон, выработку в них энергии. Адреналин и норадреналин увеличивают вход Са^ в клетку в момент развития потенциала действия, вызывая тем самым усиление сердечных сокращений.Рефрактерность сердечной мышцы характеризуется резким снижением возбудимости ткани на протяжении ее активности. Различают абсолютный и относительный рефракторный период. В абсолютном рефракторном периоде, при нанесении электрических раздражении, сердце не ответит на них раздражением и сокращением. Период рефрактерности продолжается столько, сколько продолжается систола. Во время относительного рефракторного периода возбудимость сердечной мышцы постепенно возвращается к первоначальному уровню. В этот период сердечная мышца может ответить на раздражитель сокращением сильнее порогового. Относительный рефракторный период обнаруживается во время диастолы предсердий и желудочков сердца. После фазы относительной рефрактерности наступает период повышенной возбудимости, который по времени совпадает с диастолическим расслаблением и характеризуется тем, что мышца сердца отвечает вспышкой возбуждения и на импульсы небольшой силы.СТАРЛИНГА ЗАКОН-сердца закон, зависимость энергии сокращения миокарда от степени растяжения составляющих его мышечных волокон. Энергия каждого сердечного сокращения изменяется прямо пропорционально диастолич. объёму; чем больше крови поступает к сердцу во время диастолы, тем сильнее растягиваются волокна сердечной мышцы и тем энергичнее сокращается мышца во время след. систолы. Саморегулирующийся механизм С. з. обусловлен свойствами миокарда, участвует в регуляции деятельности сердечно-сосудистой системы.
!4. Центробежные нервы сердца и характер их влияния на работу сердца.
1чработой сердца управляют 4 центробежных нерва: замедляющий, ускоряющий, ослабляющий и усиливающий». Кроме того, сердце обладает свойством автоматизма, то есть способностью ритмично сокращаться без внешнего раздражителя и влияния ЦНС. Таким образом, этот орган – саморегулирующая система.Центробежные нервы сердца Нервные импульсы поступают в сердце по блуждающим и симпатическим нервам. Эффект раздражения периферического отрезка блуждающего нерва впервые наблюдал Фолькман (1838). Он отметил замедление ритма и ослабление сокращений сердца во время раздражения нерва и некоторое ускорение ритма и усиление систол по прекращении раздражения в последействии. Фолькма’н не смог разобраться в антагонистическом характере этого эффекта. Чисто тормозной эффект при раздражении блуждающего нерва получили братья Веберы (1845), выбравшие для раздражения участок блуждающего нерва выше места присоединения к нему симпатического нерва. Эффект выражался в замедлении и остановке сердечных сокращений. Ускоряющие деятельность сердца эффекты раздражения симпатического нерва установили Бецольд (1867) и И. Ф. Цион (1866). Они проследили путь ускоряющих нервов в ветвях симпатических нервов, выходящих из спинного мозга, и прохождение их через звездчатый ганглий, петлю Виуссениуса и нижний шейный симпатический ганглий. Детально
!!!5. кровяное давление в разных отделах сосудистой системы. методика измерения. НУЖНО НАЙТИ САМИМ
!!!6. свойство сосудистой стенки и скорость течения крови в разных отделах сосудистой системы. скорость кругооборота крови. факторы обуславливающие давление крови.