Механизмы сокращения и расслабления мышечного волокна. Теория скольжения. Энергетика мышечного сокращения.

Механизм мышечного сокращения. Мышца сокращается в естественных условиях только при поступлении к ней нервных импульсов. Нервное влияние на мышечное волокно передается с помощью нервно-мышечного синапса. Медиатором в нервно-мышеч­ном синапсе является ацетилхолин. На один ПД из пресинаптиче-ского окончания нервно-мышечного синапса выделяется 200-300 квантов медиатора.

В состоянии покоя мышцы, т.е. в промежутках между переда­чей нервного импульса, происходит спонтанное выделение 1-2 квантов медиатора в синаптическую щель в среднем 1 раз в секун­ду. При этом на постсинаптической мембране формируется депо­ляризация с амплитудой 0,12-0,24 мВ. Такие потенциалы получили название миниатюрные потенциалы концевой пластинки. Они, вероятно, поддерживают высокую возбудимость синапсов в условиях функционального покоя нервных центров. Кроме эк-зоцитоза медиатора существует постоянная неквантовая утечка мо­лекул медиатора в синаптическую щель. Предполагают, что некван­товая секреция играет трофическую роль.

Пришедший по нервному волокну импульс (ПД) обеспечивает выделение в синаптическую щель ацетилхолина, который на пост-• синаптической мембране (концевой пластинке мышечного волокна) вызывает возникновение потенциала концевой пластинки (ПКП) -возбуждающего постсинаптического потенциала (ВПСП), амплитуда которого составляет 30-40 мВ. ПКП - это локальный потенциал, который, достигнув критической величины, обеспе­чивает возникновение ПД в мышечном волокне. ПД распростра­няется по мышечному волокну и Т-системе в глубь волокна, что обеспечивает выделение ионов Са2+ из саркоплазматического ретикулума. При взаимодействии ионов Са2+ с тропонином проис­ходят смещение тропомиозина и освобождение активных центров на актиновых нитях.

Затем происходит присоединение головки поперечного мости­ка миозина к актиновой нити. При этом головка миозина приобре­тает АТФ-азную активность, что обеспечивает гидролиз АТФ и ос­вобождение энергии, обеспечивающей поворот головки миозина вокруг своей оси (гребковое действие), что в свою очередь приводит к скольжению нитей актина и миозина относительно друг дру­га и укорочению саркомера и общей длины мышцы. Миозиновая головка имеет несколько активных центров, которые последователь­но взаимодействуют с соответствующими центрами на актиновой нити. В каждый конкретный момент в процессе развития сокраще­ния одни головки поперечных мостиков находятся в соединении с актиновой нитью, другие свободны, т. е. существует последователь­ность их взаимодействия с актиновой нитью, что обеспечивает плав­ность процесса сокращения.

Повторное присоединение миозиновой головки к новому цент­ру на актиновой нити вновь приводит к повороту головки, который обеспечивается запасенной в ней энергией. В каждом цикле соеди­нения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота поворота опреде­ляется скоростью расщепления АТФ.

Для расслабления мышцы в первую очередь необходимо по­нижение концентрации ионов Са2+ в области сократительных эле­ментов мышечного волокна. Саркоплазматическая сеть имеет каль­циевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ, а энергообес­печение работы кальциевого насоса также осуществляется за сче* энергии, образующейся при гидролизе АТФ.

Источником энергии для восстановления израсходованной АТФ являются белки, жиры и углеводы пищи, которые подверга­ются расщеплению в желудочно-кишечном тракте и в виде моно­меров поступают в кровь и лимфу.

В организме в результате биохимических превращений образу­ется АТФ или синтезируются крупномолекулярные вещества. АТФ - донор свободной энергии в клетках. В клетках АТФ ис­пользуется в течение одной минуты после ее образования, скорость оборота АТФ очень велика. Стабильность концентрации АТФ в клетке поддерживается рядом механизмов, одним из которых яв­ляется образование креатинфосфата (КФ). Когда количество АТФ превышает определенный уровень, часть ее энергии используется для синтеза КФ, количество которого при этом возрастает. При по­вышении же распада АТФ в условиях активации энергетического обмена КФ используется для ресинтеза АТФ с помощью окисле­ния и фосфорилирования.

Существуют и бескислородные (анаэробные) пути преобразо­вания энергии, в которых могут быть использованы только углево­ды (анаэробный гликолиз); такие способы реализуются при недо­статочном поступлении кислорода в организм, ткани и клетки. При полном прекращении дыхания и расходовании резервов кислорода эти процессы могут обеспечить потребность в энергии еще в тече­ние двух минут.