Кристаллические и аморфные тела

По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические. Характерной особенностью аморфных тел является их изотропность, т. е. независимость всех физических свойств (механических, оптических и т. д.) от направления внешнего воздействия. Молекулы и атомы в изотропных твердых телах располагаются хаотично, образуя лишь небольшие локальные группы, содержащие несколько частиц (ближний порядок). По своей структуре аморфные тела очень близки к жидкостям. Примерами аморфных тел могут служить стекло, различные затвердевшие смолы (янтарь), пластики и т. д. Если аморфное тело нагревать, то оно постепенно размягчается, и переход в жидкое состояние занимает значительный интервал температур.

Композицио́нныйматериа́л (КМ), компози́т — искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с чёткой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу (или связующее) и включённые в неё армирующие элементы (или наполнители). В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды.

Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связей между ними. Характеристики создаваемого изделия, как и его свойства, зависят от выбора исходных компонентов и технологии их совмещения.

В результате совмещения армирующих элементов и матрицы образуется композиция обладающая набором свойств, отражающими не только исходные характеристики его компонентов, но и включающий новые свойства, которыми изолированные компоненты не обладают. В частности, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения.

Для создания композиции используются самые разные армирующие наполнители и матрицы. Это — гетинакс и текстолит (слоистые пластики из бумаги или ткани, склеенной термореактивным клеем), стекло- и графитопласт (ткань или намотанное волокно из стекла или графита, пропитанные эпоксидными клеями), фанера… Есть материалы, в которых тонкое волокно из высокопрочных сплавов залито алюминиевой массой. Булат — один из древнейших композиционных материалов. В нём тончайшие слои (иногда нити) высокоуглеродистой стали «склеены» мягким низкоуглеродным железом.

В последнее время материаловеды экспериментируют с целью создать более удобные в производстве, а значит — и более дешёвые материалы. Исследуются саморастущие кристаллические структуры, склеенные в единую массу полимерным клеем (цементы с добавками водорастворимых клеев), композиции из термопласта с короткими армирующими волоконцами и пр

Основные теплофизические свойства и характеристики. Методы их определения. Механические свойства и характеристики. Методы их определения. Пожарно-технические свойства и характеристики. Методы их определения. Пожарно-технические свойства и характеристики. Методы их определения. Понятие об опасных факторах пожара. Классификация материалов по пожарной опасности. Аттестационные методы огневых испытаний.

Теплофизические свойства строительных материалов

Для использования в строительстве и ремонте помещений необходимо знать теплофизические свойства строительных материалов. В каждом конкретном случае, в процессе эксплуатации, на материалы и утеплители действуют определенные силы и нагрузки. От правильности подобранных материалов, зависит срок службы здания и комфорт проживающих людей.

Теплопроводность — это свойство строительных материалов передавать тепло от одной поверхности к другой. При увеличении температуры, теплопроводность большинства строительных материалов возрастает.

Теплоемкость строительных материалов — это количество тепла, которое необходимо передать 1 килограмму материала, чтобы увеличить его температуру на 1 градус. С увеличением влажности материалов возрастает их теплоемкость.

Огнеупорность материалов —это свойство выдерживать длительное воздействие высокой температуры, не деформируясь и не размягчаясь. Огнеупорные материалы используют для внутренней футеровки промышленных печей, дымоходов. При температуре выше 1420 градусов размягчаются тугоплавкие материалы.

Огнестойкость строительных материалов — это свойство, в течение определённого времени противостоять действию огня при нагревании. Огнестойкость зависит от горючести материалов, то есть от способности гореть и воспламеняться. Несгораемые материалы — бетон, кирпич, сталь камень и т. д., но при температуре выше шестисот градусов некоторые негорючие материалы сильно деформируются (металлы) или растрескиваются (гранит). Трудносгораемые материалы под воздействием высокой температуры или огня тлеют, но после прекращения действия огня тление и горение этих материалов прекращается (некоторые пенополистирол, фибролит, пропитанная антипиренами древесина, асфальтобетон). Открытым пламенем горят сгораемые материалы, их необходимо обрабатывать антипиренами, защищать от возгорания конструктивными и другими мерами.

Морозостойкость — это свойство материала, насыщенного водой, выдерживать попеременное оттаивание и замораживание, без изменения структуры (циклы). Морозостойкость оценивается количеством таких циклов, выражается маркой стройматериалов.

При сезонном изменении температуры материалов и окружающей среды на пятьдесят градусов относительная 0,5-1 мм/м достигает температурная деформация стройматериалов. Большой протяжённости сооружения деформационными швами разрезают во избежание растрескивания.

Отдельно рассказываем о свойствах и выборе теплоизоляционного материала

===

классификация строительных материалов по пожарной опасности

Классификация строительных материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара.

Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:

горючесть;

воспламеняемость;

способность распространения пламени по поверхности;

дымообразующая способность;

токсичность продуктов горения.

По горючести строительные материалы подразделяются на горючие (Г) и негорючие (НГ).

Строительные материалы относятся к негорючим при следующих значениях параметров горючести, определяемых экспериментальным путем: прирост температуры - не более 50 градусов Цельсия, потеря массы образца - не более 50 процентов, продолжительность устойчивого пламенного горения - не более 10 секунд.

Строительные материалы, не удовлетворяющие хотя бы одному из указанных в части 4 настоящей статьи значений параметров, относятся к горючим. Горючие строительные материалы подразделяются на следующие группы:

слабогорючие (Г1), имеющие температуру дымовых газов не более 135 градусов Цельсия, степень повреждения по длине испытываемого образца не более 65 процентов, степень повреждения по массе испытываемого образца не более 20 процентов, продолжительность самостоятельного горения 0 секунд;

умеренногорючие (Г2), имеющие температуру дымовых газов не более 235 градусов Цельсия, степень повреждения по длине испытываемого образца не более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 30 секунд;

нормальногорючие (ГЗ), имеющие температуру дымовых газов не более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 300 секунд;

сильногорючие (Г4), имеющие температуру дымовых газов более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца более 50 процентов, продолжительность самостоятельного горения более 300 секунд.

Для материалов, относящихся к группам горючести Г1-ГЗ, не допускается образование горящих капель расплава при испытании (для материалов, относящихся к группам горючести Г1 и Г2, не допускается образование капель расплава). Для негорючих строительных материалов другие показатели пожарной опасности не определяются и не нормируются.

По воспламеняемости горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:

трудновоспламеняемые (В1), имеющие величину критической поверхностной плотности теплового потока более 35 киловатт на квадратный метр;

умеренновоспламеняемые (В2), имеющие величину критической поверхностной плотности теплового потока не менее 20, но не более 35 киловатт на квадратный метр;

легковоспламеняемые (ВЗ), имеющие величину критической поверхностной плотности теплового потока менее 20 киловатт на квадратный метр.