Передача возбуждения на вегетативный ганглий. медиаторы постсинапитического.

У позвоночных животных в автономной нервной системе имеется три вида синаптической передачи: электрическая, химическая и смешанная. Органом с типичными электрическими синапсами является цилиарный ганглий птиц, лежащий в глубине глазницы у основания глазного яблока. Передача возбуждения здесь осуществляется практически без задержки в обоих направлениях. К редко встречающимся можно отнести и передачу через смешанные синапсы, в которых одновременно соседствуют структуры электрических и химических синапсов. Этот вид также характерен для цилиарного ганглия птиц. Основным же способом передачи возбуждения в автономной нервной системе является химический. Он осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон или эффектор зависит от природы рецептора постсинаптической мембраны.

В автономной нервной системе насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие биогенные амины, аминокислоты, АТФ. В зависимости от того, какой основной медиатор выделяется окончаниями аксонов автономных нейронов, эти клетки принято называть холинергическими, адренергическими, серотоиинергическими, пуринергическими и т. д. нейронами.

Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса. Так, ацетилхолин выделяется в окончаниях всех преганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических окончаний. Кроме того, часть постганглионарных симпатических волокон, иннервирующих потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью ацетилхолина. В свою очередь норадреналин является медиатором в постганглионарных симпатических окончаниях (за исключением нервов потовых желез и симпатических вазодилататоров) — сосудов сердца, печени, селезенки.

Медиатор, освобождающийся в пресинаптических терминалах под влиянием приходящих нервных импульсов, взаимодействует со специфическим белком-рецептором постсинаптической мембраны и образует с ним комплексное соединение. Белок, с которым взаимодействует ацетилхолин, носит название холинорецептора, адреналин или норадреналин — адренорецептора и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специальных пресинаптических рецепторов, которые участвуют в механизме обратной связи регуляции медиаторного процесса в синапсе.

Помимо холино-, адрено-, пуринорецепторов, в периферической части автономной нервной системы имеются рецепторы пептидов, дофамина, простагландинов. Все виды рецепторов, вначале обнаруженные в периферической части автономной нервной системы, были найдены затем в пре- и постсинаптических мембранах ядерных структур ЦНС.

Характерной реакцией автономной нервной системы является резкое повышение ее чувствительности к медиаторам после денервации органов. Например, после ваготомии орган обладает повышенной чувствительностью к ацетилхолину, соответственно после симпатэктомии — к норадреналину. Полагают, что в основе этого явления лежит резкое возрастание числа соответствующих рецепторов постсинаптической мембраны, а также снижение содержания или активности ферментов, расщепляющих медиатор (ацетилхолин-эстераза, моноаминоксидаза и др.).

В автономной нервной системе, помимо обычных эффекторных нейронов, существуют еще специальные клетки, соответствующиепостганглионарным структурам и выполняющие их функцию. Передача возбуждения к ним осуществляется обычным химическим путем, а отвечают они эндокринным способом. Эти клетки получили название трансдукторов. Их аксоны не формируют синаптических контактов с эффекторными органами, а свободно заканчиваются вокруг сосудов, с которыми образуют так называемые гемальные органы. К трансдукторам относят следующие клетки: 1) хромаффинные клетки мозгового слоя надпочечников, которые на холинергический передатчик преганглионарного симпатического окончания отвечают выделением адреналина и норадреналина; 2) юкста-гломерулярные клетки почки, которые отвечают на адренергический передатчик постганглионарного симпатического волокна выделением в кровяное русло ренина; 3) нейроны гипоталамических супраоптического и паравентрикулярного ядер, реагирующие на синаптический приток разной природы выделением вазопрессина и окситоцина; 4) нейроны ядер гипоталамуса.

Действие основных классических меадиаторов может быть воспроизведено с помощью фармакологических препаратов. Например, никотин вызывает эффект, подобный эффекту ацетилхолина, при действии на постсинаптическую мембрану постганглионарного ней­рона, в то время как сложные эфиры холина и токсин мухомора мускарин — на постсинаптическую мембрану эффекторной клетки висцерального органа. Следовательно, никотин вмешивается в меж­нейронную передачу в автономном ганглии, мускарин — в нейро-эффекторную передачу в исполнительном органе. На этом основании считают, что имеется соответственно два типа холинорецепторов: никотиновые (Н-холинорецепторы) и мускариновые (М-холинорецепторы). В зависимости от чувствительности к различным катехоламинам адренорецепторы делят на α-адренорецепторы и β-адренорецепторы. Их существование установлено посредством фармакологических препаратов, избирательно действующих на определенный вид адренорецепторов.

В ряде висцеральных органов, реагирующих на катехоламины, находятся оба вида адренорецепторов, но результаты их возбуждения бывают, как правило, противоположными. Например, в кровеносных сосудах скелетных мышц имеются α- и β-адреноре­цепторы. Возбуждение α-адренорецепторов приводит к сужению, а β-адренорецепторов — к расширению артериол. Оба вида адрено­рецепторов обнаружены и в стенке кишки, однако реакция органа при возбуждении каждого из видов будет однозначно характеризоваться торможением активности гладких мышечных клеток. В сердце и бронхах нет α-адренорецепторов и медиатор взаимодействует толь­ко с β-адренорецепторами, что сопровождается усилением сердечных сокращений и расширением бронхов. В связи с тем что норадреналин вызывает наибольшее возбуждение β-адренорецепторов сердечной мышцы и слабую реакцию бронхов, трахеи, сосудов, первые стали называть β1-адренорецепторами, вторые — β2-адренорецепторами.

При действии на мембрану гладкой мышечной клетки адреналин и норадреналин активируют находящуюся в клеточной мембране аденилатциклазу. При наличии ионов Mg2+ этот фермент катализирует образование в клетке цАМФ (циклического 3' ,5' -аденозинмонофосфата) из АТФ. Последний продукт в свою очередь вызывает ряд физиологических эффектов, активируя энергетический обмен, стимулируя сердечную деятельность.

Особенностью адренергического нейрона является то, что он обладает чрезвычайно длинными тонкими аксонами, которые разветвляются в органах и образуют густые сплетения. Общая длина таких аксонных терминалей может достигать 30 см. По ходу терминалей имеются многочисленные расширения — варикозы, в которых синтезируется, запасается и выделяется медиатор. С приходом импульса норадреналин одновременно выделяется из многочисленных расширений, действуя сразу на большую площадь гладкомышечной ткани. Таким образом, деполяризация мышечных клеток сопровождается одновременным сокращением всего органа.

Различные лекарственные средства, оказывающие на эффекторный орган действие, аналогичное действию постганглионарного во­локна (симпатического, парасимпатического и т.п.), получили название миметиков (адрено-, холиномиметики). Наряду с этим имеются и вещества, избирательно блокирующие функцию рецепторов постсинаптической мембраны. Они названы ганглиоблокаторами. Например, аммониевые соединения избирательно выключают Н-холинорецепторы, а атропин и скополамин — М-холинорецепторы.

Классические медиаторы выполняют не только функцию передатчиков возбуждения, но обладают и общебиологическим действием. К ацетилхолину наиболее чувствительна сердечнососудистая система, он вызывает и усиленную моторику пищеварительного тракта, активируя одновременно деятельность пищеварительных желез, сокращает мускулатуру бронхов и понижает бронхиальную секрецию. Под влиянием норадреналина происходит повыше­ние систолического и диастолического давления без изменения сер­дечного ритма, усиливаются сердечные сокращения, снижается секреция желудка и кишки, расслабляется гладкая мускулатура кишки и т. д. Более разнообразным диапазоном действий характеризуется адреналин. Посредством одновременной стимуляции ино-, хроно- и дромотропной функций адреналин повышает сердечный выброс. Адреналин оказывает расширяющее и антиспазматическое действие на мускулатуру бронхов, тормозит моторику пищеварительного тракта, расслабляет стенки органов, но тормозит деятельность сфинктеров, секрецию желез пищеварительного тракта.

В тканях всех видов животных обнаружен серотонин (5-окситриптамин). В мозге он содержится преимущественно в структурах, имеющих отношение к регуляции висцеральных функций, на периферии продуцируется энтерохромаффинными клетками кишки. Серотонин является одним из основных медиаторов метасимпатической части автономной нервной системы, участвующей преимущественно в нейроэффекторной передаче, и выполняет также медиаториую функцию в центральных образованиях. Известно три типа серотонинергических рецепторов — Д, М, Т. Рецепторы Д-типа локализованы в основном в гладких мышцах и блокируются диэтиламидом лизергиновой кислоты. Взаимодействие серотонина с этими рецепторами сопровождается мышечным сокращением. Рецепторы М-типа характерны для большинства автономных ганглиев; блокируются морфином. Связываясь с этими рецепторами, передатчик вызывает ганглиостимулирующий эффект. Рецепторы Т-типа, обнаруженные в сердечной и легочной рефлексогенных зонах, блокируются тиопендолом. Действуя на эти рецепторы, серотонин участвует в осуществлении коронарных и легочных хеморефлексов. Серотонин способен оказывать прямое действие на гладкую мускулатуру. В сосудистой системе оно проявляется в виде констрикторных или дилататорных реакций. При прямом действии сокращается мускулатура бронхов, при рефлекторном — изменяются дыхательный ритм и легочная вентиляция. Особенно чувствительна к серотонину пищеварительная система. На введение серотонина она реагирует начальной спастической реакцией, переходящей в ритмические сокращения с повышенным тонусом и завершающейся торможением активности.

Для многих висцеральных органов характерной является пуринергическая передача, названная так вследствие того, что при стимуляции пресинаптических терминален выделяются аденозин и инозин — пуриновые продукты распада. Медиатором же в этом случае является А Т Ф. Местом его локализации служат пресинаптические терминалы эффекторных нейронов метасимпатической части авто­номной нервной системы.

Выделившийся в синаптическую щель АТФ взаимодействует с пуринорецепторами постсинаптической мембраны двух типов. Пуринорецепторы первого типа более чувствительны к аденозину, второго — к АТФ. Действие медиатора направлено преимущественно на гладкую мускулатуру и проявляется в виде ее релаксации. В механизме кишечной пропульсии пуринергические нейроны являются главной антагонистической тормозной системой по отношению к возбуждающей холинергической системе. Пуринергические нейроны участвуют в осуществлении нисходящего торможения, в механизме рецептивной релаксин желудка, расслабления пищеводного и анального сфинктеров. Сокращения кишечника, возникающие вслед за пуринергически вызванным расслаблением, обеспечивают соответствующий механизм прохождения пищевого комка.

В числе медиаторов может быть гистамин. Он широко распространен в различных органах и тканях, особенно в пищеварительном тракте, легких, коже. Среди структур автономной нервной системы наибольшее количество гистамина содержится в постганглионарных симпатических волокнах. На основании ответных реакций в некоторых тканях обнаружены и специфические гистаминовые (Н-рецепторы) рецепторы: Н1- и Н2-рецепторы. Классическим действием гистамина является повышение капиллярной проницаемости и сокращение гладкой мускулатуры. В свободном состоянии гистамин снижает кровяное давление, уменьшает частоту сердечных сокращений, стимулирует симпатические ганглии.

На межнейронную передачу возбуждения в ганглиях автономной нервной системы тормозное влияние оказывает ГАМК. Как медиатор она может принимать участие в возникновении пресинаптического торможения.

Большие концентрации различных пептидов, особенно субстанции Р, в тканях пищеварительного тракта, гипоталамуса, задних корешков спинного мозга, а также эффекты стимуляции последних и другие показатели послужили основанием считать суб­станцию Р медиатором чувствительных нервных клеток.

Помимо классических медиаторов и «кандидатов» в медиаторы, в регуляции деятельности исполнительных органов участвует еще большое число биологически активных веществ — местных гормонов. Они регулируют тонус, оказывают корригирующее влияние на деятельность автономной нервной системы, им принадлежит существенная роль в координации нейрогуморальной передачи, в механизмах выделения и действия медиаторов.

В комплексе активных факторов видное место занимают простагландины, которых много содержится в волокнах блуждающего нерва. Отсюда они выделяются спонтанно либо под влиянием стимуляции. Существует несколько классов простагландинов: Е, G, А, В. Их основное действие — возбуждение гладких мышц, угнетение желудочной секреции, релаксация мускулатуры бронхов. На сер­дечно-сосудистую систему они оказывают разнонаправленное дей­ствие: простагландины класса А и Е вызывают вазодилатацию и гипотензию, класса G — вазоконстрикцию и гипертензию.

Синапсы ВНС имеют в целом такое же строение, что и центральные. Однако отмечается значительное разнообразие хеморецепторов постсинаптических мембран. Передача нервных импульсов с преганглионарных волокон на нейроны всех вегетативных ганглиев осуществляется Н-холинергическими синапсами, т.е. синапсами на постсинаптической мембране которых расположены никотинчувствительные холинорецепторы. Постганглионарные холинергические волокна образуют на клетках исполнительных органов (желез, ГМК органов пищеварения, сосудов и т.д.) М-холинергические синапсы. Их постсинаптическая мембрана содержит мускаринчувствительные рецепторы (блокатор-атропин). И в тех и других синапсах передача возбуждения осуществляется ацетилхолином. М-холинергические синапсы оказывают возбуждающее влияние на гладкие мышцы пищеварительного канала, мочевыводящей системы (кроме сфинктеров), железы ЖКТ. Однако они уменьшают возбудимость, проводимость и сократимость сердечной мышцы и вызывают расслабление некоторых сосудов головы и таза.

Постганглионарные симпатические волокна образуют 2 типа адренергических синапсов на эффекторах – a-адренергические и b-адренергические. Постсинаптическая мембрана первых содержит a1-и a2 – адренорецепторы. При воздействии НА на a1-адренорецепторы происходит сужение артерий и артериол внутренних органов и кожи, сокращение мышц матки, сфинктеров ЖКТ, но одновременно расслабление других гладких мышц пищеварительного канала. Постсинаптические b-адренорецепторы также делятся на b1 – и b2 – типы. b1-адренорецепторы расположены в клетках сердечной мышцы. При действии на них НА повышается возбудимость, проводимость и сократимость кардиомиоцитов. Активация b2-адренорецепторов приводит к расширению сосудов легких, сердца и скелетных мышц, расслаблению гладких мышц бронхов, мочевого пузыря, торможению моторики органов пищеварения.

Кроме того, обнаружены постганглионарные волокна, которые образуют на клетках внутренних органов гистаминергические, серотонинергические, пуринергические (АТФ) синапсы.

2. учение Павлова о 1 и 2 сигнальной системах.

Сигнальная система — система условно- и безусловнорефлекторных связей высшей нервной системы животных (включая человека) и окружающего мира. Различаютпервую и вторую сигнальные системы.

Термин введен академиком И. П. Павловым.

Первая сигнальная система развита практически у всех животных, тогда как вторая система присутствует только у человека и, возможно, у некоторых китообразных. Это связано с тем, что только человек способен формировать отвлечённый от обстоятельств образ. После произнесения слова «лимон» человек может представить, какой он кислый и как обычно морщатся, когда едят его, то есть произнесение слова вызывает в памяти образ (срабатывает вторая сигнальная система); если при этом началось повышенное отделение слюны, то это работа первой сигнальной системы.

Является предметом изучения физиологии высшей нервной деятельности человека.

Вторая сигнальная система — специальный тип высшей нервной деятельности человека, система «сигналов сигналов», идущих от общей (но не одинаковой) с животными первой сигнальной системы — ощущений, представлений, относящихся к окружающему миру. Речь, как вторая сигнальная система, как семиотическая система значимостей — это «идущие в кору от речевых органов есть вторые сигналы, сигналы сигналов. Они представляют собой отвлечение от действительности и допускают обобщение, что и составляет наше личное, специально человеческое, высшее мышление, создающее сперва общечеловеческий эмпиризм, а, наконец, и науку — орудие высшей ориентировки человека в окружающем мире и в самом себе». И. П. Павлов (1932).

Мозг животного отвечает лишь на непосредственные зрительные, звуковые и другие раздражения или их следы; возникающие ощущения составляют первую сигнальную систему действительности.[1]

В процессе эволюции животного мира на этапе становления и начального развития вида Homo sapiens произошло качественное видоизменение системы сигнализации, обеспечивающее активное и коллективное адаптивное приспособительное поведение, создавшее многообразные, принятые в группе системы сигнализации и языки: слово, по выражению И. П. Павлова, становится «сигналом сигналов». Появление второй сигнальной системы — возникновение речи и языков, сигнальных систем человека с сородичами, где условные (произвольные) сигналы индивида приобретают определенные, принятые группой значения и значимости, преобразуются в знаки языка в прямом смысле этого слова — это один из важнейших результатов многомиллионнолетней эволюции социальной жизни рода Homo, передающиеся через речевую деятельность из поколения в поколение.

В изучении В. с. с. вначале преобладало накопление фактов, характеризующих значение обобщающей функции словесных сигналов, а затем — вскрытие нервных механизмов действия слова. Установлено, что процесс обобщения словом развивается как результат выработки системы условных связей (см. Условные рефлексы); при этом имеет значение не только количество связей, но и их характер: связи, выработанные во время деятельности ребёнка, облегчают процесс обобщения. При воздействии словесных сигналов наблюдаются стойкие изменения возбудимости, большая сила, частота и длительность электрических разрядов в нервных клетках определённых пунктов коры мозга. Развитие В. с. с. — результат деятельности всей коры больших полушарий; связать этот процесс с функцией какого-то ограниченного отдела мозга невозможно. В исследованиях В.с.с. в лаборатории высшей нейродинамики и психологии высших когнитивных процессов Е. И. Бойко [1]показана плодотворность учения И. П. Павлова о динамических временных связях В.с.с.[3] В развитие идей И. П. Павлова и Е. А. Бойко в школе Е. А. Бойко разработана общая когнитивистская модель целостного рече-мысле-языкового процесса, найдены решения сложнейших теоретических проблем психологии в ее взаимосвязях с лингвистикой, такие как вопросы соотношения языка и речи в процессах речепроизводства и речепонимания; характер связей речи с мыслью, речи с личностью говорящего; особенности развития детской речи и др. Здесь разработаны новые методы анализа публичных выступлений (интент-анализ), позволяющий в известной мере реконструировать «картину мира» говорящего — его целевые и предметные направленности, их динамику, особенности в конфликтной ситуации, в свободных условиях общения, в публичных выступлениях и др.

Существенным резервом для дальнейших исследований остаются проблемы типологии колоссальных индивидуальных различий во взаимосвязях общего и специального типов ВНД, неокортекса и эмоционально-волевой и непроизвольной регуляции деятельности и общения, пока что слабо представленных как в физиологии ВНД, так и в психолингвистических исследованиях и в антропологической лингвистике.