РАСПРЕДЕЛЕНИЕ ПУАССОНА И НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ ВЕРОЯТНОСТИ

Содержание:

Задание 22 (на распределение Пуассона).

Задание 23 (на нормальное распределение вероятности).

 

Задание 22 (на распределение Пуассона).

Прядильщица обслуживает n=50 станков. Вероятность p обрыва нити за смену на одном станке мала. При этом величина np постоянна. Найти вероятность обрыва нити за смену на пяти (m=5) станках. Решить задание 18приp=0,02.

Решение.

Задание 22 – на распределение Пуассона (закон малых чисел или редких событий), как один из предельных случаев биномиального распределения. Биномиальное распределение здесь неприменимо ввиду того, что n=50, и число n!= 50! не поддается вычислению. Параметр распределения Пуассона a= np=50×0,02=1. Поэтому имеем искомую вероятность P(Am)=e-a a m/ m!=

= e-115/5!=2,718×1/120 »0,0227.

Ответ: Искомая вероятность равна P(Am) »0,0227.

 

Задание 23 (на нормальное распределение вероятности).

Вероятность появления события в каждом из n=100 независимых испытаний постоянна и равна p=0,8. Найти вероятность того, что событие появится: 1) не менее 75 раз и не более 90 раз; 2) не менее 75 раз; 3) не более 74 раз.

РЕШЕНИЕ.

Задание 23 – на нормальное распределение вероятности (на интегральную теорему Муавра - Лапласа). Воспользуемся интегральной теоремой Муавра – Лапласа: Pn (k1, k2) »F(x1) - F(x2), где F(x) - функция Лапласа (см. ниже таблицу функции Лапласа), x1=( k1-np)/ , x2=( k2-np)/ .

1) По условию, n=100, p=0,8, q=0,2, k1=75, k2=90. Вычислим x1 и x2: x1=( k1-np)/ =(75-100×0,8)/ =-1,25,

x2=( k2-np)/ =(90-100×0,8)/ =2,5. Учитывая, что функция Лапласа нечетная, т. е. F(-x) =- F(x), получим P100 (75; 90) »

»F(2,5) - F(-1,25). По таблице функции Лапласа найдем: F(2,5)=0,4938; F(-1,25)=0.3944. Искомая вероятность P100 (75; 90) » F(2,5)- F(-1,25)= =0,4938+0.3944=0,8882.

Ответ: P100 (75; 90) =0,8882.

2) Требование появления события не менее 75 раз означает, что число появлений события может быть равно 75, 76,….,100. Тогда, как и раньше, x1=( k1-np)/ =(75-100×0,8)/ =-1,25. Однако x2 будет другим: x2=( k2-np)/ =(100-100×0,8)/ = 5. По таблице функции Лапласа найдем: F(5)=0,5; F(-1,25)=0.3944. Искомая вероятность P100 (75; 100) »F(5)- F(-1,25)= =0,5+0.3944=0,8944.

Ответ: P100 (75; 100) =0,8944.

3) События «появилось не менее 75 раз» и «появилось не более 74 раз» противоположны. Поэтому сумма вероятностей этих событий равна единице. Следовательно, искомая вероятность равна P100 (0; 74) »

»1- P100 (75; 100)=1- 0,8944=0,1056.

Ответ: P100 (0; 74) =0,1056.

 

Таблица значений функции Лапласа Ф(х)=

X Ф(х) X Ф(x) X Ф(х) X Ф(х)
0,00 0,0000 0,31 0,1217 0,62 0,2324 0,93 0,3238
0,01 0,0040 0,32 0,1255 0,63 0,2357 0,94 0,3264
0,02 0,0080 0,33 0,1293 0,64 0,2389 0,95 0,3289
0,03 0,0120 0,34 0,1331 0,65 0,2422 0,96 0,3315
0,04 0,0160 0,35 0,1368 0,66 0,2454 0,97 0,3340
0,05 0,0199 0,36 0,1406 0,67 0,2486 0,98 0,3365
0,06 0,0239 0,37 0,1443 0,68 0,2517 0,99 0,3389
0,07 0,0279 0,38 0,1480 0,69 0,2549 1,00 0,3413
0,08 0,0319 0,39 0,1517 0,70 0,2580 1,01 0,3438
0,09 0,0359 0,40 0,1554 0,71 0,2611 1,02 0,3461
0,10 0,0398 0,41 0,1591 0,72 0,2642 1,03 0,3485
0,11 0,0438 0,42 0,1628 0,73 0,2673 1,04 0,3508
0,12 0,0478 0,43 0,1664 0,74 0,2703 1,05 0,3531
0,13 0,0517 0,44 0,1700 0,75 0,2734 1,06 0,3554
0,14 0,0557 0,45 0,1736 0,76 0,2764 1,07 0,3577
0,15 0,0596 0,46 0,1772 0,77 0,2794 1,08 0,3599
0,16 0,0636 0,47 0,1808 0,78 0,2823 1,09 0,3621
0,17 0,0675 0,48 0,1844 0,79 0,2852 1,10 0,3643
0,18 0,0714 0,49 0,1879 0,80 0,2881 1,11 0,3665
0,19 0,0753 0,50 0,1915 0,81 0,2910 1,12 0,3686
0,20 0,0793 0,51 0,1950 0,82 0,2939 1,13 0,3708
0,21 0,0832 0,52 0,1985 0,83 0,2967 1,14 0,3729
0,22 0,0871 0,53 0,2019 0,84 0,2995 1,15 0,3749
0,23 0,0910 0,54 0,2054 0,85 0,3023 1,16 0,3770
0,24 0,0948 0,55 0,2088 0,86 0,3051 1,17 0,3790
0,25 0,0987 0,56 0,2123 0,87 0,3078 1,18 0,3810
0,26 0,1026 0,57 0,2157 0,88 0,3106 1,19 0,3830
0,27 0,1064 0,58 0,2190 0,89 0,3133 1,20 0,3949
0,28 0,1103 0,59 0,2224 0,90 0,3159 1,21 0,3869
0,29 0,1141 0,60 0,2257 0,91 0,3186 1,22 0,3888
0,30 0,1179 0,61 0,2291 ] 0,92 0,3212 1,23 0,3907

 

X Ф(х) X Ф(х) X Ф(x) X Ф(х)
1,24 0,3925 1,58 0,4429 1,92 0,4726 2,52 0,4941
1,25 0,3944 1,59 0,4441 1,93 0,4732 2,54 0,4945
1,26 0,3962 1,60 0,4452 1,94 0,4738 2,56 0,4948
1,27 0,3980 1,61 0,4463 1,95 0,4744 2,58 0,4951
1,28 0,3997 1,62 0,4474 1,96 0,4750 2,60 0,4953
1,29 0,4015 1,63 0,4484 1,97 0,4756 2,62 0,4956
1,30 0,4032 1,64 0,4495 1,98 0,4761 2,64 0,4959
1,31 0,4049 1,65 0,4505 1,99 0,4767 2,66 0,4961
1,32 0,4066 1,66 0,4515 2,00 0,4772 2,68 0,4963
1,33 0,4082 1,67 0,4525 2,02 0,4783 2,70 0,4965
1,34 0,4099 1,68 0,4535 2,04 0,4793 2,72 0,4967
1,35 0,4115 1,69 0,4545 2,06 0,4803 2,74 0,4969
1,36 0,4131 1,70 0,4554 2,08 0,4812 2,76 0,4971
1,37 0,4147 1,71 0,4564 2,10 0,4821 2,78 0,4973
1,38 0,4162 1,72 0,4573 2,12 0,4830 2,80 0,4974
1,39 0,4177 1,73 0,4582 2,14 0,4838 2,82 0,4976
1,40 0,4192 1,74 0,4591 2,16 0,4846 2,84 0,4977
1,41 0,4207 1,75 0,4599 2,18 0,4854 2,86 0,4979
1,42 0,4222 1,76 0,4608 2,20 0,4861 2,88 0,4980
1,43 0,4236 1,77 0,4616 2,22 0,4868 2,90 0,4981
1,44 0,4251 1,78 0,4625 2,24 0,4875 2,92 0,4982
1,45 0,4265 1,79 0,4633 2,26 0,4881 2,94 0,4984
1,46 0,4279 1,80 0,4641 2,28 0,4887 2,96 0,4985
1,47 0,4292 1,81 0,4649 2,30 0,4893 2,98 0,4986
1,48 0,4306 1,82 0,4656 2,32 0,4898 3,00 0,49865
1,49 0,4319 1,83 0,4664 2,34 0,4904 3,20 0,49931
1,50 0,4332 1,84 0,4671 2,36 0,4909 3,40 0,49966
1,51 0,4345 1,85 0,4678 2,38 0,4913 3,60 0,499841
1,52 0,4357 1,86 0,4686 2,40 0,4918 3,80 0,499928
1,53 0,4370 1,87 0,4693 2,42 0,4922 4,00 0,499968
1,54 0,4382 1,88 0,4699 2,44 0,4927 4,50 0,499997
1,55 0,4394 1,89 0,4706 2,46 0,4931 5,00 0,500000
1,56 0,4406 1,90 0,4713 2,48 0,4934    
1,57 0,4418 ! 1,91 0,4719 2,50 0,4938