Геометрическая интерпретация комплексного числа
Всякое комплексное число z = (x, y) можно изобразить как точку на плоскости с координатами x и y. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью, при этом ось Ox называется действительной, а Oy -мнимой.
Расстояние r точки z от нулевой точки, т. е. число
называется модулем комплексного числа z и обозначается символом |z|.
Число
называем аргументом комплексного числа z и обозначаем символом θ = arg z. При заданном r углы, отличающиеся на , соответствуют одному и тому же числу. В этом случае записываем называем главным значениемаргумента.
Числа r и θ называют полярными координатами комплексного числа z. В этом случае
z = (x, y) = (r cos θ, r sin θ) = r(cos θ + i sin θ)
называется тригонометрической формой комплексного числа.
Если z1 = (r1 cos θ1, r1 sin θ1), z2 = (r2 cos θ2, r2 sin θ2), то
z1z2 = (r1r2 cos(θ1 + θ2), r1r2 sin(θ1 + θ2)),
Для n-й степени числа z = (r cos θ, r sin θ) формула приобретает вид zn = (rn cos nθ, rn sin nθ).
При r = 1 соотношение приобретает вид zn = (cos nθ, sin nθ) и называется формулой Муавра.
Корень n-й степени из комплексного числа z имеет n различных значений, которые находятся по формуле
(1)
24. +
25. +
26. +
27. +
28.
29.
30.
31. Интегрирование функции комплексной переменной
Пусть функция f (z) – определена и непрерывна в области G, а G – кусочно-гладкая кривая, лежащая в области G; z=x+iy, f(z)=u+iv, где u=u(x,y), v=v(x,y) – действительные функции переменных x и y. Вычисление интеграла от функции w=f(z) сводится к вычислению криволинейных интегралов второго рода
Если кривая задана параметрическими уравнениями x=x(t), y=y(t),а начальная и конечная точки дуги соответствуют значениям t=a, t=b, то
где z(t)=x(t)+iy(t).
Пусть Г – кусочно-гладкая кривая, состоящая из гладких частей Г1, Г2...Гn. Тогда