Применение сверхпроводников

Вопросы различных применений сверхпроводящих материалов стали обсуждаться практически сразу после открытия явления сверхпроводимости. Еще Камерлинг-Оннес считал, что с помощью сверхпроводников можно создавать экономичные установки для получения сильных магнитных полей. Однако реальное использование сверхпроводников началось в 50-х − начале 60-х годов XX века. В настоящее время работают сверхпроводящие магниты различных размеров и форм. Их применение вышло за рамки чисто научных исследований, и сегодня они широко используются в лабораторной практике, в ускорительной технике, томографах, установках для управляемой термоядерной реакции. С помощью сверхпроводимости стало возможным многократно повысить чувствительность многих измерительных приборов. Такие приборы названы сквидами (от англ. Superconducting Quantum Interference Devices). Особо следует подчеркнуть внедрение сквидов в технику, в том числе и в современную медицину.

Наибольшее применение сверхпроводники нашли в настоящее время в области создания сильных магнитных полей. Современная промышленность производит из сверхпроводников второго рода разнообразные провода и кабели, используемые для изготовления обмоток сверхпроводящих магнитов, с помощью которых получают значительно более сильные поля (более 20 Тл), чем при использовании железных магнитов.

Сверхпроводящие магниты являются и более экономичными. Так, например, для поддержания в медном соленоиде с внутренним диаметром 4 см и длиной 10 см поля 100 кГс необходима электрическая мощность не менее 5100 кВт, которую нужно полностью отвести водой, охлаждающей магнит. Это означает, что через магнит надо прокачивать не менее 1 м3 воды в минуту, а затем ее еще охлаждать. В сверхпроводящем варианте такой объем магнитного поля создается достаточно просто, необходимо лишь сооружение гелиевого криостата для охлаждения обмоток, что является несложной технической задачей.

Другое преимущество сверхпроводящих магнитов состоит в том, что они могут работать в короткозамкнутом режиме, когда поле «заморожено» в объеме, что обеспечивает практически не зависящую от времени стабильность поля. Это свойство очень важно при исследованиях веществ методами ядерного магнитного и электронного парамагнитного резонансов, в томографах и т. п.

Еще одно применение сверхпроводников − создание подшипников и опор без трения. Если над металлическим кольцом с током поместить сверхпроводящую сферу, то на ее поверхности в силу эффекта Мейснера индуцируется сверхпроводящий ток, что приводит к появлению сил отталкивания между кольцом и сферой, и сфера может повиснуть над кольцом.

Подобный же эффект может наблюдаться, если над сверхпроводящим кольцом поместить постоянный магнит. На этом может быть основано создание, например, новых видов транспорта. Речь идет о создании поезда на магнитной подушке, в котором будут полностью отсутствовать потери на трение о колею дороги. Модель такой сверхпроводящей дороги длиной 400 м была построена в Японии еще в 1970-х годах. Расчеты показывают, что поезд на магнитной подушке сможет развивать скорость до 500 км/ч. Такой поезд будет «зависать» над рельсами на расстоянии 2−3 см, что и даст ему возможность разогнаться до указанных скоростей.

В настоящее время широко используются сверхпроводящие объемные резонаторы, добротность которых может достигать . С одной стороны, такие устройства позволяют получать высокую частотную избирательность. С другой стороны, сверхпроводящие резонаторы широко используются в сверхпроводящих ускорителях, позволяя существенно уменьшить мощность, требуемую для создания ускоряющего электрического поля.

Применение сверхпроводимости может привести к созданию сверхбыстрых электронно-вычислительных машин. Речь идет о так называемых криотронах − переключающих сверхпроводящих элементах. Такие устройства могут легко сочетаться со сверхпроводящими запоминающими элементами. Важным преимуществом криотронов перед обычными полупроводниковыми устройствами является отсутствие потребности в энергии в стационарном состоянии. После создания переходов Джозефсона было предложено заменить ими криотроны, и оказалось, что время переключения такой системы составляет около 10-12 с. Именно это и открывает широкие перспективы для создания мощнейших вычислительных машин, но пока эти разработки являются лишь лабораторными образцами.

Наиболее перспективными направлениями широкого использования высокотемпературных сверхпроводников считаются криоэнергетика и криоэлектроника. В криоэнергетике уже разработана методика изготовления достаточно длинных (до нескольких километров) проводов и кабелей на основе висмутовых ВТСП-материалов. Этого уже достаточно для изготовления небольших двигателей со сверхпроводящей обмоткой, сверхпроводящих трансформаторов, катушек индуктивности и т. д. На основе этих материалов созданы сверхпроводящие соленоиды, обеспечивающие при температуре жидкого азота (77 К) магнитные поля порядка 10000 Гс.

В криоэлектронике разработана методика изготовления пленочных сквидов, которые по своим характеристикам практически не уступают гелиевым аналогам. Освоена методика получения совершенных магнитных экранов из ВТСП, в частности, для исследования биомагнитных полей. Из ВТСП созданы антенны, передающие линии, резонаторы, фильтры, смесители частоты и т. д.

Темп технологических и прикладных исследований очень высок, так что, возможно, промышленность освоит выпуск изделий из высокотемпературных сверхпроводников раньше, чем будет достоверно выяснена природа сверхпроводимости в металлооксидных соединениях.

 

Контрольные вопросы

1. Каково равновесное состояние электронного газа в проводнике в отсутствие электрического поля?

2. Поясните механизм дрейфа электронов под действием внешнего поля.

3. Какими соотношениями определяется подвижность носителей заряда в полупроводниках? Какие факторы определяют величину подвижности?

4. Чем определяется электропроводность σn металлов?

5. Чем обусловлено электросопротивление металлов? Какова его зависимость от температуры?

6. О чем говорит закон Видемана – Франца?

7. Почему при расчётах электропроводности проводников учитывается полная концентрация носителей заряда, если реально в проводимости участвуют только ферми-электроны?

8. Привести график и дать объяснения зависимости проводимости легированного полупроводника с разной степенью легирования от температуры.

9. Указать основные свойства сверхпроводящего состояния

10. Дать качественное описание механизма возникновения сверхпроводимости с помощью БКШ-теории.

11. Описать направления применения сверхпроводимости.