Зависимость энергии электрона от волнового вектора

Поскольку энергетический спектр электронов носит зонный характер, определим зависимость энергии электронов Е от импульса р внутри каждой зоны. Зависимость Е(р) называют дисперсионным соотношением.

Движение совершенно свободного электрона вдоль оси X описывается уравнением Шредингера

(4.1)

где E=P2/2m (т.к. он обладает только кинетической энергией) (4.2)

Формула (4.2) представляет собой дисперсионное соотношение для свободных электронов Е(р). Преобразуем его по формуле де Бройля:

P = h/l= ħ / (l/2p) = ħk , (4.3)

где l - длина волны,

k=2p/l - значение волнового вектора электрона.

Волновой вектор k по направлению совпадает с направлением распространения электронной волны.

Подставим Р из (4.3) в (4.2):

(4.4)

Из формул (4.4) и (4.2) видно, что для свободных электронов закон дисперсии (дисперсионное соотношение) имеет квадратичный характер и для одномерного движения выражается параболой (рис 4.4).

k
E

 


 

 

Рисунок 4.4

Решением уравнения Шредингера (4.1) является плоская бегущая волна

ψ=Aeikx . (4.5)

Квадрат модуля волновой функции пропорционален вероятности обнаружения электрона в той или иной области пространства. Как видно из (4.5) для свободного электрона эта вероятность не зависит от координат электрона, т.к.

½Y½2=Y×Y* = A2 . (4.6)

Это означает, что для свободного электрона все точки пространства эквивалентны и вероятность нахождения его в любой из них одинакова (рис.4.5).

ψ∙ψ*
A2
0
х

 


Рисунок 4.5

 

Однако для электрона, движущегося в периодическом поле кристалла, вероятность обнаружения его в данном месте кристалла должна быть периодической функцией, зависящей от координаты x. Периодичность функции кратна постоянной решетки а. Различными вероятностями будут обладать только положения электрона в пределах одного периода, т.е. амплитуда волновой функции электрона, движущегося в периодичном поле, не остается постоянной, а периодически меняется с периодом, равным периоду решетки а. Обозначим эту амплитуду U(x). Тогда волновая функция электрона, движущегося в периодическом поле кристалла в направлении x, будет:

(4.7)

где U(x+na)=U(x), n - любое целое число.

a
x
U
Ψ∙Ψ٭
Функция (4.7) называется функцией Блоха. (Гиперссылка 4.3) Конкретный вид этой функции определяется видом потенциальной энергии Uа(x) (рис 4.6), входящей в уравнение Шредингера.

 

Рисунок 4.6

Соответственно должно изменяться и дисперсионное соотношение для электронов, движущихся в периодическом поле кристалла. Во-первых, энергетический спектр таких электронов приобретает зонный характер,
во-вторых, внутри каждой зоны энергия электрона оказывается периодической функцией волнового вектора k.

Уравнение Шредингера, описывающее движение электронов в линейной цепочке потенциальных ям с учетом (4.7), имеет вид

. (4.8)

где Е – собственное значение энергии электрона;

ψ– собственная функция при данном собственном значении;

Uа(х) – периодическая функция, характеризующая силовое поле и являющейся потенциальной энергией электрона в кристаллической решетке.

Из-за невозможности точно определить потенциал Ua(x) необходимо принять некоторые упрощения, которые были предложены Кронигом и Пенни.Они предложили потенциал приблизить к прямоугольному. Таким образом, в модели Кронига-Пенни рассматривается движение электрона в линейной цепочке прямоугольных потенциальных ям (рис. 4.7). Ширина ям равна с, и они отдельны друг от друга потенциальными барьерами толщиной b и высотой U0. Длина цепочки равна L, а период цепочки равен а=с+b.

 

а)
б)
U
+
+
+
+
+
+
U0
U
с
b
а
X
X
a
а
I
II

 

 


Рис. 4.7. Изменение потенциальной энергии электрона:

а - в реальном кристалле; б - в модели Кронига-Пенни

 

Для области I, где потенциальная энергия U=0, волновая функция, являющаяся решением уравнения, может быть представлена в виде

.

Первое слагаемое в уравнении соответствует прямой волне, а второе – волне, отраженной от потенциального барьера.

Для области II, где U=U0, волновую функцию можно записать в виде

В этих уравнениях коэффициенты α и β равны:

где величины A, B, C, D - некоторые константы.

Отраженные волны уносят часть энергии прямой волны, ослабляя ее. Пока для электронной волны ее длина λ и модуль волнового вектора k не соответствуют условиям брегговского отражения (гиперссылка 4.4) (nλ=2a; k=nπ/a, где n=1, 2,...), отраженные волны будут иметь различные фазы и, налагаясь, ослабляют друг друга. Поэтому прямая волна проходит через кристалл, почти не отражаясь, т.е. электрон движется в кристалле почти как свободный электрон.

При дальнейшем увеличении k (и уменьшении λ) энергия отраженных волн растет, а энергия прямой волны уменьшается. Поэтому темп роста энергии прямой волны в зависимости от k уменьшается по сравнению с темпом роста свободного электрона.

Чем меньше отличается k от π/a, тем все более кривая E=f(k) отличается от параболы, приведенной на рис. 4.4.

Когда волновой вектор k= π/a, все отраженные волны отказываются в фазе, и интенсивность отраженной волны равна интенсивности прямой волны, то в кристалле возникает стоячая электронная волна. Она описывает такое состояние электрона, при котором он одинаково вероятно может двигаться как в прямом, так и в обратном направлениях.

Дальнейшее увеличение k возможно только при условии, что энергия его изменится скачком. После этого модуль k может снова увеличиваться от π/a до 2π/a, а характер изменения энергии электрона E=f(k) будет таким же, как описано ранее. Далее все повторяется при значениях k=3π/a, 4π/a и т.д.

Состояниям электрона, при k от 0 до ±π/a соответствует некоторый интервал энергий от 0 до Емакс – первая разрешённая зона. Значениям k от ±π/a до ±2π/a соответствует интервал энергий, образующих вторую разрешенную зону, и т.д. Разрешенные зоны отделены друг от друга интервалами энергий, которые электрон в кристалле иметь не может (запрещенные зоны) (рис. 4.8).

Области значений волнового вектора k, в пределах которых энергия Е(k) электрона, как периодическая функция, проходит полный цикл изменения, называют зонами Бриллюэна.

Для одномерного кристалла первая зона Бриллюэна располагается от k=+p/a до k=-p/a и имеет протяженность 2p/a (см. рис 4.8).

Определим значения максимальных и минимальных энергий в разрешенных зонах.

 

k
π/a
-π/a
E
π/a
2π/a
3π/a
-3π/a
-2π/a
-π/a
Разреш. зона 1
Разреш. зона 2
Разреш. зона 3
Запрещ. зона 2
Запрещ. зона 1
k
k
E

 

 


Рисунок 4.8. Зоны Бриллюэна для одномерного кристалла
(слева – расширенная, справа – приведенная зоны Бриллюэна)

 

После решения уравнения (4.8) для одномерного кристалла с параметром а энергия (дисперсионное соотношение для электрона в кристалле) может быть выражена следующим выражением:

E(k)=Ea+C+2Acos(ka) (4.9)

где Ea – энергия атомного уровня, из которого образовалась зона;

С – сдвиг уровня под действием поля соседних атомов;

А – обменный интеграл, учитывающий появившуюся у электронов кристалла возможность перехода от атома к атому вследствие перекрытия их волновых функций. Он тем больше, чем сильнее перекрываются волновые функции, т.е. с чем большей частотой могут обмениваться соседние атомы своими электронами.

Для s состояний As<0; для p состояний Ap>0.

Поэтому уравнение (4.9):

- для s-зон Es(k)=E`s – 2Ascos(ka); (4.10)

- для p-зон Ep(k)=E`p + 2Apcos(ka), (4.11)

где E`s=Eas+Cs ; E`p=Eap+Cp;

As и Ap – абсолютные значения обменных интегралов для этих состояний.

На рис.4.9 изображены дисперсные кривые E(k) для s и p зон, построенные по уравнениям (4.10) и (4.11).

 

Ep max
Ep min
Es max
Es min
-π/a
π/a
Bp
Dp
Ds
Bs
4Ap
4As
Bp
EC
EV
Ec
Ev
Eg
∆Ep
∆Es
E(k)
k
Зона проводимости
Валентная зона

 

 


Рисунок 4.9

Для одномерного кристалла первая зона Бриллюэна располагается от
k=+p/a до k=-p/a и имеет протяженность 2p/a. Вблизи экстремума дисперсионную кривой (при k=0, k= ±p/a) cos(ka) можно разложить в ряд по ka и ограничиться первыми двумя членами разложения. Подставляя это в уравнение (4.10) и (4.11), получим:

Es(k)= Es min +As(ka)2 (4.12)

Ep(k)= Ep max +Ap(ka)2 (4.13)

Минимум дисперсной кривой Е(k) называют дном энергетической зоны, а максимум - вершиной. Поэтому полученные соотношения можно переписать следующим образом:

Eдно(k)= Emin + Aд(ka)2 (4.14)

Eверх(k)= Emax - Aв(ka)2 (4.15)

Таким образом, у дна и вершины энергетической зоны энергия электрона пропорциональна квадрату волнового вектора и обменному интегралу, определяющему ширину зоны. На рисунке 4.9 параболы, соответствующие уравнениям (4.14) и (4.15), показаны пунктирными линиями.

Для реальных кристаллов зависимость Е(k) является более сложной. (Гиперссылка 4.5)