Спектральные приборы

Спектральными называются оптические приборы, в которых осуществляется разложение электромагнитного излучения оптического диапазона на монохроматические составляющие. Такие приборы используются для качественного и количественного исследования спектрального состава света, излучаемого, поглощаемого, отражаемого или рассеиваемого веществом. Эти исследования позволяют судить о свойствах вещества, его химическом составе и характере физических процессов, связанных с излучением или взаимодействием света с веществом. Спектральные приборы применяются также для получения излучения заданного спектрального состава.

Большинство современных спектральных приборов являются «классическими» по способу осуществления спектрального разложения излучения. В этих приборах в качестве диспергирующего элемента используется дифракционная решетка, которая осуществляет пространственное разложение излучения в спектр (по длинам волн).

«Классические» приборы можно разделить на две группы: монохроматоры и спектрографы.

Монохроматоры предназначены для выделения излучения в пределах заданного спектрального интервала. Оптическая система монохроматора включает в себя входную щель, коллиматорный объектив, дифракционную решетку, фокусирующий объектив и выходную щель, которая выделяет излучение, принадлежащее узкому интервалу длин волн. В монохроматорах всегда имеется возможность сканирования спектра путем поворота дифракционной решетки вручную либо с помощью специального механизма.

Спектрографы предназначены для одновременной регистрации относительно широкой области спектра. В отличие от монохроматоров, в фокальной плоскости фокусирующего объектива вместо выходной щели устанавливается многоэлементный приемник (фотодиодная линейка, ПЗС линейка, ПЗС матрица и др.), позволяющий регистрировать оптическое излучение в пределах определенного поля. Спектрографы используются преимущественно в ультрафиолетовой (УФ), видимой и ближней инфракрасной (ИК) областях спектра, что обусловлено имеющимися в настоящее время многоэлементными приемниками излучения (190—2600 нм).

Основными характеристиками спектральных приборов, определяющими их свойства и возможности, являются:

- рабочий спектральный диапазон,

- светосила и относительное отверстие,

- дисперсия и разрешающая способность,

- уровень рассеянного света,

- компенсация астигматизма.

вопрос 86. Квантовая механика Э. Шредингер.

Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием макроскопических объектов, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля.

Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул, атомов, электронов и фотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также других элементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.

Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния.

Основные уравнения квантовой динамики — уравнение Шрёдингера, уравнение фон Неймана, уравнение Линдблада, уравнение Гейзенберга и уравнение Паули.

Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов, теория вероятностей, функциональный анализ, операторные алгебры, теория групп.

Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона вклассической механике. Установлено Эрвином Шрёдингером в 1925 году, опубликовано в 1926 году.

Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)

В начале XX века учёные пришли к выводу, что между предсказаниями классической теории и экспериментальными данными об атомной структуре существует ряд расхождений. Открытие уравнения Шрёдингера последовало за революционным предположением де Бройля, что не только свету, но и вообще любым телам (в том числе и любым микрочастицам) присущи волновые свойства.

Исторически окончательной формулировке уравнения Шрёдингера предшествовал длительный период развития физики. Оно является одним из важнейших уравнений физики, объясняющих физические явления. Квантовая теория, однако, не требует полного отказа от законов Ньютона, а лишь определяет границы применимости классической физики. Следовательно, уравнение Шрёдингера должно согласовываться с законами Ньютона в предельном случае.

Уравнение Шрёдингера инвариантно относительно преобразований Галилея. Из этого факта вытекает ряд важных следствий: существование ряда операторов квантовой механики, связанных с преобразованиями Галилея, невозможность описания состояний со спектром масс или нестабильные элементарные частицы в нерелятивистской квантовой механике (теорема Баргмана), существование квантовомеханических инвариантов, порождаемых преобразованием Галилея.

вопрос 87. Оптические и фотоэлектрические свойства полупроводников. Эффект Холла.

Рассмотрим световой поток мощностью Wo, падающий нормально к поверхности полупроводниковой пластинки (рис. 5.1, а). Часть светового потока отражается от поверхности полупроводника. При этом доля отраженной энергии характеризуется коэффициентом отражения r=Wr/Wо ≈ 0,25...0,3, где Wr - мощность отраженного пучка света. Следовательно, мощность пучка отраженного света составляет Wr=r·Wо, а оставшаяся мощность светового потока, поступившего в полупроводник, W1=(1-r)Wо.

Свет, проникая в полупроводник, постепенно поглощается, передавая часть своей энергии кристаллической решетке и его мощность уменьшается. Количество световой мощности dW, поглощаемой слоем dx, пропорционально мощности света W, падающего на этот слой, и толщине слоя:

dW=-aWdx, (5.1)

где a - коэффициент поглощения света, м-1.

Знак минус в правой части формулы (5.1) указывает на уменьшение мощности света.

Коэффициент поглощения света a численно равен относительному изменению мощности света на единицу длины, проходимого светом в поглощающей среде.

Интегрирование (5.1) с учетом отражения от поверхности позволяет найти решение этого дифференциального уравнения в виде

W=W1e-ax=Wo(1-r) e-ax. (5.2)

Выражение (5.2) известно как закон Бугера-Ламберта. График этой функции, представленный в виде экспоненциальной зависимости интенсивности светового потока Ф от глубины х, отсчитанной от поверхности полупроводника, представлен на рис. 5.1, б.

Из графика рис. 5.1, б видно, что при х=a-1 световой поток в полупроводнике убывает в e 2,73 раза. Таким образом, коэффициент поглощения света a - величина, обратная толщине слоя х, в котором мощность (или сила) проходящего пучка света уменьшается в2,73 раза.

Поглощение света в полупроводниках связано с процессом возбуждения электронов с более низких на более высокие энергетические уровни или с передачей энергии фотонов кристаллической решетке полупроводника. Различают несколько видов оптического поглощения. Каждому из них соответствует определенная часть спектра длин световых волн.