Волноводы

Каждый конкретный тип волны в волноводе может распространяться в том случае, если

(2)

где – длина волны генератора; – критическая длина

волны, которая определяется размерами и формой поперечного сечения волновода.

Для волн типа Еmn и Hmn в прямоугольном волноводе

,

где а, b – размеры поперечного сечения волновода. Для волн типа Еmn в круглом волноводе

,

где a – радиус волновода; n-й корень уравнения Jm(х)=0. Для волн типа Нmn в круглом волноводе

где n-й корень уравнения J'm(х)=0.

Значения корней и приведены в прил.1, 2. Фазовая скорость волны в волноводе определяется величиной продольного волнового числа:

,

где ; g= –поперечное волновое число.

Если выполняется условие (2), то , значение h действительное и данный тип волны распространяется. Если условие (1) не выполняется, то , значение h мнимое и даный тип волны затухает, не распространяясь.

Для нахождения фазовой скорости и длины волны в волноводе можно воспользоваться соотношением

,

где –длина волны в волноводе.

Тогда фазовая скорость

;

длина волны в волноводе

;

групповая скорость

.

где с – скорость света в свободном пространстве.

Решая уравнения Гельмгольца, можно получить следующие выражения для составляющих векторов напряженностей электрического и магнитного полей волн типа Еmn в прямоугольном волноводе:

;

;

;

;

;

.

 

Низшей из волн электрического типа является волна Е11.

Выражения для составляющих векторов напряженностей полей волн типа Нmn в прямоугольном волноводе записываются в виде

;

;

;

;

;

.

Основным типом волны в прямоугольном волноводе при а >b является волна Н10, для которой =2а, ближайшими высшими типами – волны Н20, Н01, Н11.

Составляющие векторов поля волны типа Еmn в круглом волноводе имеют вид:

;

;

;

;

;

.

Низшей среди волн электрического типа в круглом волноводе является Е01, для которой =2,613а; ближайшим высшим типом – волна Е11.

Выражения для составляющих векторов поля волн типа Нmn в круглом волноводе имеют вид

;

 

;

;

;

;

.

Основным типом волны в круглом волноводе, имеющем наибольшую критическую длину, является волна Н11, для которой =3,413a. Из других волн магнитного типа в круглом волноводе часто используют волну H01, для которой =1,640а.

Характеристическим сопротивлением Zс волновода называется отношение поперечных составляющих векторов Е и Н. Для волн электрического типа

.

Для волн магнитного типа

,

где Z0 характеристическое сопротивление плоской волны в свободном пространстве.

Мощность, переносимую волной любого типа в волноводе, определяют интегрированием вектора Пойнтинга по поперечному сечению волновода:

.

 

Мощность, переносимая волной типа Н10 в прямоугольном волноводе

,

где Е0 – максимальная амплитуда напряженности электрического поля в волноводе.

Мощность, переносимая волной типа Н11 в круглом волноводе

.

Максимальная переносимая мощность в волноводе определяется максимально допустимой (пробивной) напряженностью электрического поля в волноводе. Для сухого воздуха при атмосферном давлении Еmax = 30 кВ/см.

Результирующий коэффициент ослабления волны в волноводе равен сумме коэффициентов ослабления, вызванных потерями в металлических стенках и в диэлектрике:

.

Коэффициент ослабления вследствие потерь в металлических стенках для любой волны в волноводе произвольного сечения

,

где Rs = – поверхностное сопротивление металла; – составляющая магнитного поля, тангенциальная к поверхности металла.

Для волн типа Н10 в прямоугольном волноводе

;

типа Нmn в прямоугольном волноводе (п 1)

;

типа Emn в прямоугольном

;

типа Hmn в круглом

;

типа Еmn в круглом волноводе

.

Расчетные формулы получены в предположении, что волновод имеет воздушное заполнение. Если волновод заполнен диэлектриком, то в эти формулы вместо следует подставлять значение длины волны в диэлектрике .

Для расчета коэффициента ослабления за счет потерь в диэлектрике используется формула

 

.

Если tg << 1, то

,

или

 

3.1. Какие типы волн могут распространяться в заполненном воздухом прямоугольном волноводе течением 10 х 4 см при частоте f = 5 ГГц?

3.2. Какие типы волн могут распространяться в квадратном волноводе со стороной 1 см при частоте 10 ГГц? Волновод заполнен диэлектриком с относительной проницаемостью =2,6.

3.3. Какие типы волн могут распространяться в заполненном воздухом круглом волноводе диаметром 3 см при частоте 7,5 ГГц?

3.4. Прямоугольный волновод сечением 23 х 10 мм заполнен диэлектриком с относительной проницаемостью =2,25. Частота колебаний 8,4 ГГц. Определите величины и .

3.5. Определите критическую длину волны, критическую частоту и длину волны в прямоугольном волноводе для волны типа Е11. Размеры поперечного сечения 4 х 3 см; частота колебаний 10 ГГц.

3.6. Определите критическую частоту и фазовую скорость волны в круглом волноводе диаметром 5 см при частоте 5 ГГц.

3.7. Определите диапазон частот, в пределах которого в круглом волноводе диаметром 4 см может распространяться только основной тип волны.

3.8. Определите размеры поперечного сечения прямоугольного волновода, при которых может

 

распространяться лишь основной тип волны. Длина волны генератора 10 см .

3.9. Определите размеры поперечного сечения квадратного волновода, в котором при частоте 4 ГГц может распространяться лишь низшая волна электрического типа.

3.10. В круглом волноводе приняты меры, чтобы волна типа Н11 не возбуждалась. Определите радиус волновода, при котором может распространяться только волна типа Е01. Частота колебаний 9 300 МГц.

3.11. Определите радиус круглого волновода, если фазовая скорость волны типа Е01 при частоте поля 10 ГГц равна 5·108 м/с.

3.12. Вычислите размеры поперечного сечения квадратного волновода, если известно, что фазовая скорость волны типа Е11 равна 6·108 м/с; частота передаваемых колебаний 5 ГГц.

3.13. Длина волны в волноводе при работе на основном типе волны составляет 4,5 см. Размеры поперечного сечения волновода 2,6 х 1,3 см. Найдите частоту передаваемых колебаний.

3.14. Фазовая скорость волны типа Н10 в прямоугольном волноводе равна 5 с, где с – скорость света. Определите размеры волновода, если длина волны в свободном пространстве равна 10 см.

3.15. Найдите групповую скорость волны типа Н10 в прямоугольном волноводе сечением 72 х 34 мм при частоте поля 3 ГГц.

3.16. В круглом волноводе распространяется волна типа Е01. Частота поля 10 ГГц, длина волны в волноводе 4 см. Вычислите групповую скорость.

3.17. В волноводе, заполненном диэлектриком с относительной проницаемостью = 2,25, распространяется волна с фазовой скоростью 3·108 м/с. Определите групповую скорость.

3.18. Определите характеристическое сопротивление волны типа H10 в прямоугольном волноводе сечением 72 х 34 мм при частоте колебаний 3 ГГц.

3.19. Определите характеристическое сопротивление волны

 

типа Е01 в круглом волноводе диаметром 30 мм при длине волны генератора 3,2 см.

3.20. В круглом волноводе диаметром 5 см, заполненном диэлектриком, распространяется волна типа Н11. Частота колебаний 3 ГГц. Определите диэлектрическую проницаемость вещества, заполняющего волновод, если фазовая скорость волны равна скорости света в свободном пространстве.

3.21. Устройство для измерения диэлектрической проницаемости вещества представляет собой прямоугольный волновод сечением 23 х 10 мм, заполненный диэлектриком. Для измерения длины волны в волноводе в середине его широкой стенки прорезана продольная щель, вдоль которой перемещается зонд с детектором. Волновод работает на основном типе волны. Определите диэлектрическую проницаемость исследуемого вещества, если при частоте сигнала 10 ГГц длина волны в волноводе равна 22,6 мм.

3.22. Определите критическую длину волны и характеристическое сопротивление основной волны в П-образном волноводе с размерами а = 36 мм, b = 16 мм, d = 6 мм, s = 9 мм. Длина волны генератора 6 см.

3.23. Рабочий диапазон частот Н-образного волновода принято определять как интервал от 1,2fкр основного типа волны до fкр следующего типа волны. Определите рабочий диапазон частот Н-образного волновода со следующими размерами: а = 20 мм, b = 6 мм, d = 1 мм. s = 10 мм. Критическую длину волны типа Н20 принять при­ближенно равной а.

3.24. Определите затухание волны типа Н10 в отрезке прямоугольного волновода сечением 23 х 10 мм, длиной 10 см на частоте 6 ГГц.

3.25. Определите частоту колебаний, передаваемых по круглому волноводу диаметром 3 см, если затухание волны основного типа на длине 40 см составляет 60 дБ.

3.26. Какая максимальная мощность может быть передана по прямоугольному волноводу сечением 23 х 10 мм, работающему на частоте 10 ГГц? Волновод заполнен воздухом, предельно допустимое значение напряженности электрического поля 30 кВ/см.

3.27. В прямоугольном волноводе сечением 50 х 25 мм, работающем на волне типа Н10, передается средняя мощность 10 кВт. Частота поля 5 ГГц. Определите амплитуду напряженности электрического поля на оси волновода, а также максимальное значение поверхностной плотности тока на его стенках.

3.28. Амплитудное значение продольной составляющей напряженности электрического поля на оси прямоугольного волновода сечением 5 х 2,5 см составляет 105 В/м. Частота поля 7,5·109 Гц. Диэлектрик – воздух; тип волны Е11. Определите максимальное значение амплитуды поверхностной плотности тока и плотности тока смещения.

3.29. В круглом волноводе диаметром 3 см распространяется волна типа Н11, частота колебаний 7,5 ГГц, передаваемая мощность 50 кВт. Определите максимальное значение напряженности электрического поля в волноводе.

3.30. В круглом волноводе радиусом а распространяется волна типа H01. На каком расстоянии от оси волновода напряженность электрического поля имеет максимальное значение?

 

4. Линии передачи с волнами типа Т

 

Для волн типа Т поперечное волновое число g = 0, поэтому продольное волновое число h оказывается таким же, как и в случае однородной плоской волны. Для линии без потерь , откуда

, .

Здесь – длина однородной плоской волны в заполняющем диэлектрике с параметрами .

Характеристическое сопротивление волны типа Т в линии без потерь

.

Распределение электрического и магнитного полей вдоль продольной оси z можно записать в виде бегущей волны: Для линии с потерями , .

Распространение волны типа Т возможно лишь в линиях, которые могут быть использованы для передачи постоянного тока (двухпроводные, коаксиальные, полосковые и др.).

Линии передачи с волной типа Т характеризуются волновым сопротивлениемZв,равным отношению комплексных амплитуд напряжения и тока в режиме бегущих волн и выражающимся через погонные индуктивность L1 и емкость С1 линии следующим образом:

.

Фазовая скорость в линии передачи с волной типа Т

.

Мощность, переносимая волной по линии передачи,

,

или

,

где интегрирование ведется по поперечному сечению линии.

Коэффициент ослабления волны в линии передачи складывается из коэффициента , учитывающего потери в диэлектрике, и коэффициента , описывающего потери в металле:

,

Здесь

,

. (3)

где Rs – поверхностное сопротивление металла.